

Serinus Cal 300 Ozone Transfer Standard

User Manual

Version: 1.2

www.ecotech.com

This page is intentionally blank

Table of Contents

	Manu	ıfacturer's	Statement	11	
	Safet	y Informat	tion	12	
	Warra	antv		14	
		•	pairs		
	00		ce Guidelines		
	Produ				
	Product Compliance and Approvals Claims for Damaged Shipments and Shipping Discrepancies				
	Claiiii		aged Shipments		
			ing Discrepancies		
			act Details		
	Mani		n History		
	IVIAIIC	iai Kevisio	II IIIstory	10	
1.	Intro	duction		19	
	1.1	Descrip	tion	19	
	1.2	·	rations		
	1.2	1.2.1	Photometer		
		1.2.2	Calibration		
		1.2.3	Output Flow	20	
		1.2.4	Internal Diluent	20	
		1.2.5	External Diluent	20	
		1.2.6	Ozone Generator	20	
		1.2.7	Power	21	
		1.2.8	Operating Conditions	21	
		1.2.9	Communications	21	
		1.2.10	9 Physical Dimension	22	
	1.3	Nomen	clature	22	
	1.4	Backgro	ound/Theory	23	
		1.4.1	Ozone Photometer Theory		
		1.4.2	Explanation Photometer Transfer Standards		
	1.5	Instrum	nent Description	26	
_					
2.	Insta	illation		3/	
	2.1	Initial C	heck		
		2.1.1	Packaging		
		2.1.2	Opening the Instrument		
		2.1.3	Items Received	37	
	2.2	Installat	tion Notes	38	
	2.3	Instrum	nent Set-up	38	
		2.3.1	Setting-up a Serinus Cal 300	39	
		2.3.2	Pneumatic Connections	40	
		2.3.3	Power Connection	41	
		2.3.4	Internal Diluent		
		2.3.5	External Diluent		
		2.3.6	Output Ports		
		2.3.7	Exhaust Port		
		2.3.8	Communications Connections		
	2.4	Transpo	orting/Storage	43	
3.	Ope	ration		45	
	- 1				

3.1	Warm-U	р	45
3.2	Theory o	of Operation	45
	3.2.1	Running a Point or Sequence	46
	3.2.2	Operation	46
3.3	General	Operation Information	52
	3.3.1	Keypad & Display	
3.4		creen	
		& Screens	
3.5	3.5.1		
	0.0.1	Quick Menu	
	3.5.2		
	3.5.3	Main Menu	
	3.5.4	Points & Sequencing Menu	
	3.5.5	Define Points Menu	
	3.5.6	Define Point Menu	
	3.5.7	Define Sequences Menu	
	3.5.8	Define Sequence Menu	
	3.5.9	Manual Operation Menu	
		Manual Point Menu	
		Manual Flow Menu	
		Analyser State Menu	
		Status Menu	
		Temperature Menu	
		Pressure & Flow Menu	
		Voltage Menu	
		General Settings Menu	
		Measurement Settings Menu	
		Calibration Menu	
		Pressure Calibration Menu	
		Ozone Calibration Menu	
		Flow Calibration Menu	
		MFC Calibration Menu	
		Service Menu	
		Diagnostics Menu	
		Digital Pots Menu	
		Internal Pump Menu	
		Internal Diluent Menu	
		Valve Menu	
		Tests Menu	
		Digital Input Test Menu	
		Digital Output Test Menu	
		Calculation Factors Menu	
		Communications Menu	
		Data Logging Menu	
		Serial Communication Menu	
		Analog Input Menu	
		Analog Output Menu	
		Digital Output Menu	
		Network Menu	
		Bluetooth Menu	
		Trend Display Menu	
		Chart	
		Advanced Menu	
	3.5.45	Hardware Menu	82

		3.5.46 MFC Installation M	Лепи	83
		3.5.47 Parameter Display	/ Menu	83
4.	Com	munications		84
	4.1	RS232 Communication		85
	4.2	USB Communication		86
	4.3	TCP/IP Network Communica	ation (optional)	87
		·	n Remote Modem/Router Setup	
		_	ommunicate with Serinus	
	4.4	Digital/Analog Communicati	ion	90
		4.4.1 Analog Outputs		90
		4.4.2 Analog Inputs		91
		4.4.3 Digital Status Inpu	its	91
		4.4.4 Digital Status Outp	outs	91
	4.5	Logging Data		93
		4.5.1 Configure Instrum	ent Internal Logging	93
	4.6	Using Airodis Software to Do	ownload Data	93
		4.6.1 Connecting the Se	rinus to your PC	93
		4.6.2 Installing Airodis		96
		4.6.3 Configuring Airodi	is	96
	4.7	Serinus Remote App/Blueto	oth	102
		4.7.1 Installation		102
		4.7.2 Connecting to the	Instrument	103
		4.7.3 Control Serinus Ins	strument	104
		4.7.7 Preferences		108
5.	Calik	ration		111
	5.1	MFC Calibration		111
		5.1.1 MFC Pre Calibration	on Setup	112
		5.1.2 MFC Calibration		112
		5.1.3 Readout Calibration	on	113
	5.2	Ozone Flow Calibration		113
	5.3	Pressure Calibration		116
	5.4	Ozone Generator Character	isation	117
	5.5	Photometer Calibration		118
		5.5.1 Photometer Pre-C	heck	118
		5.5.2 Photometer Calibr	ration	119
	5.6	Photometer Audit with Exte	ernal Ozone Source	119
6.	Serv	ce		121
	6.1	Maintenance Tools		121
	6.2			123
	6.3			
			Lamp	
		6.3.3 Cleaning		134
	6.4	Bootloader		134
		6.4.1 Display Help Scree	en	135

	6.4.2 Communications Port Test	135
	6.4.3 Updating Firmware from USB Memory Stick	135
	6.4.4 Erase All Settings	135
	6.4.5 Start Calibrator	
7. Tro	oubleshooting	137
7.1	Main Screen Error Messages	137
7.2	Ecotech Service Support Files	
8. Op	otional Extras	139
8.1	. Rack Mount Kit (PN: E020116)	139
8.2	,	
0.2	8.2.1 Hardware Setup	
8.3	·	
9. Spa	are Parts and Schematics	145
9.1	. Maintenance Kit (PN: E020325)	145
9.2		
9.3		
9.4		
9.5	,	
9.6	,	
9.7	, ,	
9.8	Ozone Generator Exploded View – (PN: H013140)	153
9.9	Flow Block Assembly Exploded View – (PN: H013165)	
9.10	.0 Photometer Valve Manifold (V8) – (PN: H013180)	155
9.11	1 Dilution Valve Manifold (V13) – (PN: H013180-02)	
9.12	.2 Audit Valve Manifold (V4) – (PN: H013180-03)	157
9.13	.3 Bullet Valve – (PN: H010058)	158
9.14	4 Internal Diluent Pump Assembly – (PN: H013200)	
Append	dix A. Advanced Protocol	161
A.1	Command Format	
A.2	2 Commands	
	A.2.1 Communication Error	
	A.2.2 Get IEEE Value	
	A.2.3 Set Calibration Mode	
	A.2.4 Set Calibration	
	A.2.5 Serinus Calibrator	
	A.2.5.1 General Comments	
	A.2.5.1.1 Gas Index	
	A.2.5.1.3 Port Index	
	A.2.5.1.4 IEEE	
	A.2.5.1.5 Reading and Writing Values	
	A.2.5.2 Sub Commands	
	A.2.5.2.1 Mode (1)	
	A.2.5.2.2 Purge (2)	
	A.2.5.2.3 Port (3)	167
	A.2.5.2.4 Standard (4)	168

	A.2.5	.2.5 Point (5)	169
	A.2.5	5.2.6 Sequence (6)	170
	A.2.5	.2.7 Ozone Cal (7)	171
		.2.8 Manual Flow (8)	
		5.2.9 Gas (9)	
A.3	List of F	Parameters	175
Appendix	αВ.	EC9800 Protocol	187
B.1	Comma	and Format	187
B.2	Comma	ands	187
	B.2.1	DCONC	187
	B.2.2	DSPAN	187
	B.2.3		
	B.2.4		
	B.2.5		
Appendix	С.	Bayern-Hessen Protocol	189
C.1	Comma	and Format	189
C.2	Comma	ands	
	C.2.1		
	C.2.2	ST	192
Appendix	D.	ModBus Protocol	193
D.1	Comma	and Format	193
D.2	Comma	ands	194
	D.2.1	Read Holding Registers	
	D.2.2		
	D.2.3	3 Error	194
Appendix	¢ Ε.	Gascal Protocol	197
Appendix	(F.	Beer-Lambert Law	199
List of I	igures	S	
Figure 1 -	– Ozone	Transfer Standard Hierarchy	25
_		al Components Diagram	
_		oid Valve Operation	
_		oid Bullet Valve	
0		meter Diaphragm Valve	
•		. •	
_		meter Valve Manifold	
•		t Valve Manifold	
_		Valve Manifold	
_		Generator Assembly	
_		e Scrubber	
Figure 11	– Flow	Block Assembly	32
Figure 12	– Refer	rence Tee	33
Figure 13	– Shield	ded Photometer Assembly	33
Figure 14	– Lamp	Driver PCA Type Jumper Settings (REV D)	35

Figure 15 – Opening the Instrument	37
Figure 16 – Serinus Cal 300 Rear Panel	39
Figure 17 – Installation of USB Memory Stick	40
Figure 18 – Switching the Battery On/Off	40
Figure 19 – O3 Generator Setup	47
Figure 20 – Home Screen Running EXE 01 Point	47
Figure 21 – O3 Gen/Photometer Setup	48
Figure 22 – Home Screen Running EXE 02 Point	49
Figure 23 – Multipoint Sequence Setup	51
Figure 24 – Front Panel	52
Figure 25 – Home Screen	54
Figure 26 – Chart Screen	80
Figure 27 – Communication Ports	85
Figure 28 – Multidrop RS232 Cable Example	86
Figure 29 – Example of Typical Network Setups	87
Figure 30 – Example of Network Menu Setup	88
Figure 31 – Port Forwarding Example	89
Figure 32 – LAN Network Set-Up (Airodis)	89
Figure 33 – WAN Network Set-Up (Airodis)	89
Figure 34 – 25 Pin Rear Panel PCA (Default Jumpers Highlighted)	92
Figure 35 – External 25 Pin I/O Individual Pin Descriptions	92
Figure 36 – Installing Driver Software (Device Manager)	93
Figure 37 – Update Driver Popup	94
Figure 38 – Update Driver Popup (Directory Location)	94
Figure 39 – Installing Driver Confirmation Prompt	95
Figure 40 – Successful Driver Installation	95
Figure 41 – Airodis Workspace Manager	97
Figure 42 – Adding a New Station	97
Figure 43 – Adding a New Station	98
Figure 44 – Station Configuration (Channel List)	99
Figure 45 – Error Status Notification	99
Figure 46 – Downloading Data	100
Figure 47 – Download Data Status	100
Figure 48 – Data Visibility	101
Figure 49 – Exporting Data	101
Figure 50 – Data Download Complete	102
Figure 51 – Downloading the App from Google Play Store	103
Figure 52 – Bluetooth Pairing Request	103
Figure 53 – Showing or Hiding the NumPad	104
Figure 54 – Switching Analysis	
Figure 55 – Real-Time Plot	
Figure 56 – Plot of Downloaded Data	
Figure 57 – Directory Settings	
Figure 58 – Logs Format	
Figure 59 – Colour Theme Settings	

Figure 60 – MFC Calibration Setup	112
Figure 61 – Ozone Generator Flow Test Point	114
Figure 62 – Ozone Flow Calibration Start	114
Figure 63 – Ozone Flow Calibration 80 sccm	115
Figure 64 – Enter Ozone Flow 80 ± 2 sccm	115
Figure 65 – Ozone Flow Calibration 100 sccm	115
Figure 66 – Enter Ozone Flow 100 ± 2 sccm	115
Figure 67 – Connecting the Barometer to O4 (Output 4)	117
Figure 68 – Minifit Extraction Tool – (PN: T030001)	121
Figure 69 – Orifice Removal Tool – (PN: H010046)	121
Figure 70 – Valve Driver Tool – (PN: T030014)	121
Figure 71 – Leak Check Jig – (PN: H050069)	122
Figure 72 – Air Monitoring Test Equipment Kit (AMTEK) – Customisable	122
Figure 73 – Blocking Reference Air Vent	124
Figure 74 – Isolating Pressure Regulator	124
Figure 75 – Leak Check: Full Test	125
Figure 76 – Leak Check: 1A (Photometer + Gas Delivery + Ext. Diluent + Ref. Air)	125
Figure 77 – Bypass Internal Diluent Pump	126
Figure 78 – Leak Check: 1B (Photometer + Gas Delivery + Int. Diluent + Ref. Air)	127
Figure 79 – Leak Check: 2 (Photometer + Gas Delivery + Ref. Air)	128
Figure 80 – Leak Check: 3 (Photometer + Ref. Air)	129
Figure 81 – Leak Check: 4 (Photometer + Gas Delivery)	130
Figure 82 – Removing Shielded Photometer Top Cover	131
Figure 83 – Location of UV Lamp Fastening Grub Screw	132
Figure 84 – USB Memory Stick File Structure	138
Figure 85 – Separate Rack Slides	140
Figure 86 – Assemble Inner Slide on Chassis	140
Figure 87 – Rack Mount Ears Fitted to Instrument	141
Figure 88 – Attach Rack Mount Adaptors to Outer Slides	141
Figure 89 – Test Fit the Rack Slide Assembly into Your Rack	142
Figure 90 – Attach Slides to Front of Rack	142
Figure 91 – Slide Clips	143
List of Tables	
Table 1 – Internationally Recognised Symbols	12
Table 2 – Manual Revision History	18
Table 3 – Digital Output States	77
Table 4 – Analog Outputs	90
Table 5 – Setting up a New Station via Airodis	98
Table 6 – Options Menu	105
Table 7 – Maintenance Schedule	123
Table 8 – Included Parts (Rack Mount Kit)	139
Table 9 – Serinus Cal 300 Maintenance Kit (PN: E020325)	145
Table 10 – Serinus Accessories Kit	145
Table 11 – Serinus Cal 300 Consumables	146

Table 12 – Spare Parts List	147
Table 13 – Packet Format	
Table 14 – Example: Primary Gas Request	161
Table 15 – Example: Primary Gas Response	
Table 16 – Example: Primary Gas Response (continued)	
Table 17 – List of Errors	
Table 18 – Example: Get IEEE Response data	163
Table 19 – Gas Indexes	164
Table 20 – Unit Indexes	165
Table 21 – Port Indexes	165
Table 22 – Mode Control	166
Table 23 – Purge Control	167
Table 24 – Port Definition	167
Table 25 – Gas Standard Definition	168
Table 26 – Point Definition	169
Table 27 – Sequence Definition	170
Table 28 – Ozone Calibration	171
Table 29 – Calibration Mode Indexes	172
Table 30 – Mode Selection	172
Table 31 – Diluent Port Selection	173
Table 32 – Source Port Selection	173
Table 33 – Flow	173
Table 34 – Gas Selection	174
Table 35 – Custom Gas Definition Sub Command	174
Table 36 – Molecular Structure Index	174
Table 37 – Advanced Protocol Parameter List	175
Table 38 – Bayern-Hessen Data	189
Table 39 – Block Check Operation	190
Table 40 – Status Bit Map	191
Table 41 – Failure Bit Map (Positive Logic)	191
Table 42 – Modbus Error Codes	195
Table 43 – Native Serial Commands	197

Manufacturer's Statement

The Serinus Cal 300 is designed primarily as a standalone ozone transfer standard used to supply precise concentrations of ozone span gas to gas analysers.

This User Manual provides a complete product description including operating instructions, calibration, and maintenance requirements for the Serinus Cal 300.

Reference should also be made to the relevant local standards, which should be used in conjunction with this manual. Some of these standards are listed in this manual.

If, after reading this manual you have any questions or you are still unsure or unclear on any part of the Serinus Cal 300, please do not hesitate to contact Ecotech or your local Ecotech distributor.

Please help the environment and recycle the pages of this manual when you have finished using it.

Notice

The information contained in this manual is subject to change without notice. Ecotech reserves the right to make changes to equipment construction, design, specifications and /or procedures without notice.

Copyright © 2020 All rights reserved. Reproduction of this manual, in any form, is prohibited without the written consent of Ecotech Pty Ltd.

Safety Information

Read all the safety information in this section prior to using the equipment. To reduce the risk of personal injury caused by potential hazards, follow all safety notices and warnings in this documentation.

The following internationally recognised symbols are used on Ecotech equipment:

Table 1 – Internationally Recognised Symbols

	Protective conductor terminal	IEC 60417-5017
\sim	Alternating current	IEC 60417-5032
<u></u>	Caution, hot surface	IEC 60417-5041
	Caution, risk of danger to user and/or equipment Refer to any accompanying documents	ISO 7000-0434
4	Caution, risk of electric shock	ISO 3864-5036

These symbols will also be found throughout this manual to indicate relevant safety messages.

Note: Notes are used throughout this manual to indicate additional information regarding a particular part or process.

If the equipment is used for purposes not specified by Ecotech, the protection provided by this equipment may be impaired.

Important Safety Messages

Disconnect Power Prior to Service

Hazardous voltages exist within the instrument. Do not remove or modify any of the internal components or electrical connections whilst the mains power is on.

Always unplug the equipment prior to removing or replacing any components.

Replacing Parts

Replacement of any part should only be carried out by qualified personnel, using only parts specified by Ecotech, as these parts meet stringent Ecotech quality.

Mains Supply Cord

Do not replace the detachable mains supply cord with an inadequately rated cord. Any mains supply cord that is used with the instrument must comply with the safety requirements (250V/10A minimum requirement). A mains power cord with a protective earth conductor must be used.

Ensure that the mains supply cord is maintained in a safe working condition.

Do Not Expose Equipment to Flammable Gases

This equipment is not intended for use in explosive environments, or conditions where flammable gases are present. The user should not expose the equipment to these conditions. Do not introduce any flammable gases into the instrument, otherwise serious accidents such as explosion or fire may result.

Electromagnetic Compliance

The instrument lid should be closed when in normal operation, to comply with EMC regulations.

Means of Lifting/Carrying Instrument

This instrument is a heavy and bulky object. Two persons should lift/carry the object, otherwise use proper lifting equipment. Proper lifting techniques should be used when moving the instrument.

Internal Components

Do not insert a rod or finger into the cooling fans, otherwise injury may result.

Do not energise the instrument until all conductive cleaning liquids, used on internal components, are dried up.

Warranty

This product has been manufactured in an ISO 9001/ISO 4801 facility with care and attention to quality.

The product is subject to a two year warranty period on parts and labour from date of shipment (the warranty period). The warranty period commences when the product is shipped from the factory. Lamps and consumable items are not covered by this warranty.

Each calibrator is subjected to a vigorous testing procedure prior to despatch and will be accompanied with a parameter list and a multipoint calibration check thereby enabling the calibrator to be installed and ready for use without any further testing.

Service and Repairs

Our qualified and experienced technicians are available to provide fast and friendly service between the hours of 8:30am – 5:00pm AEST Monday to Friday. You are welcome to speak to a service technician regarding any questions you have about your calibrator.

Service Guidelines

This manual is designed to provide the necessary information for the setup, operation, testing, maintenance, and troubleshooting of your instrument.

Should you still require support after consulting the documentation, we encourage you to contact your local distributor for support.

To contact Ecotech directly, please e-mail our Technical Support Services group at support@ecotech.com or to speak with someone directly:-

Please dial 1300 364 946 if calling from within Australia

Please dial +61 3 9730 7800 if calling from outside of Australia

Please contact Ecotech and obtain a Return Material Authorization (RMA) number before sending any equipment back to the factory. This allows us to track and schedule service work and to expedite customer service. Please include this RMA number when you return equipment, preferably both inside and outside the shipping packaging. This will ensure you receive prompt service.

When shipping instrumentation, please also include the following information:

- · Name and phone number
- Company name
- Shipping address
- · Quantity of items being returned
- Model number/s or a description of each item
- Serial number/s of each item (if applicable)
- A description of the problem and any fault-finding completed
- Original sales order or invoice number related to the equipment

Shipping Address:

Attention Service Department

Ecotech Pty Ltd

1492 Ferntree Gully Road,

Knoxfield, VIC, Australia 3180

Product Compliance and Approvals

The Serinus Cal 300 Ozone Transfer Standard, as manufactured by Ecotech Pty Ltd, complies with the essential requirements of the directives listed below (including CE compliance). The respective standards have been applied:

Low Voltage Directive (LVD) Directive 2014/35/EU

EN 61010-1:2010 Safety requirements for electrical equipment, for

measurement, control and laboratory use - General

requirements

Electromagnetic Compatibility (EMC) Directive 2014/30/EU

EN 61326-1:2013 Electrical equipment for measurement, control and

laboratory use – EMC requirements – General

requirements

Radio Equipment Directive (RED) 2014/53/EU

EN 300 328 V2.1.1 Wideband transmission systems – Data transmission

equipment operating in the 2.4 GHz ISM band and using

wide band modulation techniques

Regulatory Compliance Mark (RCM) - Australia

AS/NZS 4268:2017 Radio equipment and systems – Short range devices –

Limits and methods of measurement

ARPANSA Maximum Exposure Levels to Radiofrequency Fields – 3

Radiation Protection Standard kHz to 300 GHz – Radiation Protection Series Publication

No. 3: 2002

Claims for Damaged Shipments and Shipping Discrepancies

Damaged Shipments

Inspect all instruments thoroughly on receipt. Check materials in the container/s against the enclosed packing list. If the contents are damaged and/or the instrument fails to operate properly, notify the carrier and Ecotech immediately.

The following documents are necessary to support claims:

- · Original freight bill and bill of lading.
- Original invoice or photocopy of original invoice.
- · Copy of packing list.
- Photographs of damaged equipment and container.

You may want to keep a copy of these documents for your records.

Please refer to the instrument name, model number, serial number, sales order number, and your purchase order number on all claims.

You should also:

- Contact you freight forwarder for an insurance claim.
- Retain packing material for insurance inspection.

Shipping Discrepancies

Check all packages against the packing list immediately on receipt. If a shortage or other discrepancy is found, notify the carrier and Ecotech immediately. We will not be responsible for shortages against the packing list unless they are reported promptly (within 7 days).

Contact Details

Head Office

1492 Ferntree Gully Road, Knoxfield VIC Australia 3180 Phone: +61 (0)3 9730 7800 Fax: +61 (0)3 9730 7899

Email: info@ecotech.com Service: service@ecotech.com

International Support: support@ecotech.com

www.ecotech.com

Manual Revision History

Manual PN: M010059

Current revision: 1.2

Date released: 14 May 2020

Description: User Manual for the Serinus Cal 300 Ozone Transfer Standard

This manual is the full user manual for the Serinus Cal 300 Ozone Transfer Standard. This manual contains all relevant information on theory, specifications, installation, operation, maintenance and calibration. Any information that cannot be found within this manual can be obtained by contacting Ecotech.

This manual uses cross reference links extensively throughout this manual. The hot keys below will greatly reduce the amount of time scrolling between references:

• You can access the links by pressing the following:

> CTRL + LEFT MOUSE CLICK: Move to the link location

You can switch between links by pressing the following:

> ALT + LEFT ARROW KEY: Returns you to previous Link

> ALT + RIGHT ARROW KEY: Swaps back

Table 2 - Manual Revision History

Edition	Date	Summary	Pages
1.0	06/09/2017	Initial release	-
1.1	14/05/2020	Based on Firmware v3.90.0002. Firmware menus and valve types updated. O ₃ Flow calibration routine updated. Safety Instructions updated. Relief valve added. Diagrams updated.	All
1.2	17/12/2020	Ambient operating temp updated	

1. Introduction

1.1 Description

The Serinus Cal 300 has been designed as a stand-alone Ozone Transfer Standard specifically for environmental applications and should give many years of trouble free service provided that it is used and maintained correctly.

It can be used in conjunction with ozone analysers such as the Serinus 10 to provide precise and constant volumes of zero air or various concentrations of ozone for calibration.

The Serinus Cal 300 includes its own internal zero air generator, ozone generator as well as an ozone photometer for the accurate creation and delivery of ozone concentrations for use when calibrating O_3 analysers.

This section will describe the specifications of the calibrator as well as the main components and techniques used to provide stable gas concentrations.

1.2 Specifications

1.2.1 Photometer

Range

0 - 3000 ppb

Precision

0.5 ppb or 0.2 % of reading, whichever is greater

Linearity

1 ppb or <1 % of full scale, whichever is greater

Noise at Zero

<0.25 ppb

Noise at Span

<0.1 % or 0.25ppb of reading, whichever is greater

Lag Time

Less than 20 sec

Rise/Fall Time

Less than 60 sec

1.2.2 Calibration

Zero Drift

Temperature dependant: 0.1 ppb per °C

24 hours: < 0.3 ppb

7 days: < 0.3 ppb

Span Drift

Temperature dependant: 0.1 % per °C

24 days: 0.5 % of reading

30 days: 0.5 % of reading

1.2.3 Output Flow

Repeatability

Within 0.15 % of full scale

Linearity

Within 0.15 % of full scale

Assumes operating diluent pressure of 120-180 kPa.

1.2.4 Internal Diluent

Range

3 to 5 slpm

Accuracy

±1 % of full scale

1.2.5 External Diluent

Range

0.05 to 5 slpm

Accuracy

±1% of full scale

1.2.6 Ozone Generator

Output

50 ppb to 1000 ppb at 5 slpm

Repeatability

< 1 % short term (24 hours)

5 % long term at constant temperature and humidity

1.2.7 Power

Operating Voltage

100-240V AC (± 10%)

50 to 60 Hz

Overvoltage Category II

Power Consumption

177 VA max (typical at startup)

87 VA after warm up

1.2.8 Operating Conditions

Ambient Temperature Range

0 °C to 35 °C (32 °F to 104 °F), 20 °C to 35 °C for optimum performance.

Relative Humidity

10 % to 80 % (non-condensing)

Pollution Degree

2

Maximum Altitude

2000 m above sea level

1.2.9 Communications

User Interface

Via front panel keypad, computer or Android Bluetooth device

Programmable Calibrations

- 16 separate programmable sequences
- 32 separate programmable points

Analog Output

- Menu selectable current output of 0-20 mA, 2-20 mA or 4-20 mA.
- Voltage output of 0 to 5 V, with menu selectable zero offset of 0 V, 0.25 V or 0.5 V.
- Voltage output of 0 to 10 V (configured using jumpers (JP3) on rear panel PCA).
- User definable Range.

Analog Input

• Three analog voltage inputs (0-5 VDC) CAT I rated.

Digital Output

- RS232 port #1: Normal digital communication.
- RS232 port #2: Multidrop port used for multiple instrument connections on a single RS232.
- USB port connection on rear panel.
- USB memory stick (front panel) for data logging, event logging, points and sequencing logging, points and sequence configuration and user configuration storage.
- TCP/IP port (optional)
- 1 Diluent Control, +12 V output.
- 25 pin connector with discrete status and user control.
 - o 8 Digital Outputs, open collector max 400 mA each @ 12 VDC (max total output 2 A).
 - o 8 Digital Inputs, 0-5 VDC, CAT I rated.

1.2.10 Physical Dimension

Case Dimensions

Rack length (front to rear): 597 mm (23.5") Total length (w/ latch release): 638 mm (25.1")

Chassis width: 418 mm (16.5") Front panel width: 429 mm (16.9")

Chassis height: 163 mm/uses 4RU (6.4")

Front panel height: 175 mm (6.9")

Weight: 25.7 kg

1.3 Nomenclature

O ₃ :	Ozone is an inorganic molecule with the chemical formula O_3 . It is a pale blue gas with a distinctively pungent smell.
Bootloader:	A program that checks whether the current firmware is valid, then executes the instrument start-up. The bootloader can be entered by pressing the '+' key on the front keypad during the first ½ second after power on, and following the prompts. The bootloader enables various low-level recovery tools, including updating the main firmware from a USB memory stick.
Diluent:	Diluent gas is a clean, unreactive gas used to dilute reactive samples via the Diluent Port.
Exhaust Air:	The exhaust port is where excess calibration gases and ozone are exhausted from the instrument.
ID and OD:	These are measurements of tubing. ID is the internal diameter of tubing. OD is the outer diameter.
Multidrop:	A configuration of multiple calibrators and/or analysers connected via the same RS232 cable.

Span:	A gas sample of known composition and concentration used to calibrate/check the upper range of an instrument.
Zero:	Zero air to calibrate/check the lower range of an instrument.
Point:	A single operation such as a dilution.
Sequence:	A group of points and operations.
Background:	Is the reading of the instrument without ozone present in the measurement cell. The background measurement is performed using reference air supplied from the diluent port.
Calibration:	The process of adjusting an instrument to ensure that it is measuring the correct concentration.
Zero Drift:	The change in instrument response to zero air over a period of continuous unadjusted operation.
Zero Air:	Is purified air in which contaminants are removed to a level below what is detectable by the instruments used within the calibration system. In a typical ambient air monitoring station this normally includes water vapour, hydrocarbons, O ₃ , NO, NO ₂ , SO ₂ , H ₂ S and CO.
PCA:	Printed Circuit Assembly. An electronic circuit mounted on a printed circuit board to perform a specific electronic function.
Slpm:	Standard litres per minute. This is the flow referenced to standard temperature and pressure conditions. For the purposes of this manual, all flows are referenced to 0 °C and 101.3 kPa (1 atm).

1.4 Background/Theory

1.4.1 Ozone Photometer Theory

This section outlines the relevant theory for Serinus Cal 300 which contains an ozone (O₃) photometer and ozone generator.

The photometer accurately measures and controls the ozone concentration generated by an internal generator, allowing its use as a transfer standard to calibrate ozone analysers.

The Serinus Cal 300 follows these principles and measurement techniques:

- Ozone shows strong absorption of UV light at 254 nm.
- Diluent air is passed into the glass absorption tube (Optical Cell).
- Within the photometer, a single beam of UV radiation (from a mercury vapour lamp) passes through the sample and is absorbed by the ozone.
- The solar blind vacuum photodiode detects any UV light that is not absorbed.
- The strength of the UV light signal being detected is proportional to the amount of UV light being absorbed by ozone.

- The Serinus Cal 300 uses the Beer-Lambert relationship (Appendix F) to calculate the ozone concentration.
- O₃ is not the only gas that absorbs UV (254 nm), SO₂ and aromatic compounds also absorb
 radiation at this wavelength. To eliminate these interferences a second cycle (referred to as the
 reference cycle) is performed with zero air from the internal zero air generator (ZAG). This
 reference signal is removed from the sample measurement signal. This enables the accurate
 measurement of ozone without the influence of interferent.
- The main controller PCA contains electronics to measure, and correct for all the major external variables to ensure stable and reliable operation.

Note: In order to obtain the desired stability levels necessary for ozone analyser calibrations, the user should run the Serinus Cal 300 at the same ozone concentration for at least 30 minutes to obtain a sufficiently stable output.

1.4.2 Explanation Photometer Transfer Standards

In ambient air monitoring applications, precise ozone concentrations called *standards* are required for the calibration of ozone analysers. Due to the instability of ozone, concentrations must be generated and "verified" on site with another instrument referred to as a *transfer standard*.

A transfer standard is defined as a transportable device or apparatus which is capable of accurately reproducing ozone.

The transfer standard's purpose is to transfer the authority of a Level 1 pollutant standard to a remote point where it is used to verify or calibrate an air monitoring analyser.

The U.S. EPA identifies the family of standard reference photometers (SRPs) as Level 1 standards.

Beyond the SRPs, all standards are considered transfer standards and are numbered (starting with 2) based on their 'distance in the traceability chain' from a verification against a Level 1 standard. With each additional level, the number of standards available is multiplied. Each standard is traceable through a chain of "higher" standards to the Level 1 standard.

The majority of transfer standards include both ozone generators and photometers. Therefore, it is strongly suggested that:

- Level-2 standards used in the verification of other transfer standards include both a generation device and a photometer. (Serinus Cal 3000 or Serinus Cal 300)
- Level-3 standards at a minimum, a photometer (Serinus 10). The level 3 standard can be a photometer and generator (Serinus 10, Serinus Cal 3000 or Serinus Cal 300) but should not be just a generator.
- Level-4 standards can be an ozone generation device (Serinus Cal 2000)

Ozone Transfer Standards also require routine calibration against a higher transfer standard. Please refer to your local standard.

Ecotech is able to offer a Level 2 and lower calibration service.

Standard Reference Photometer

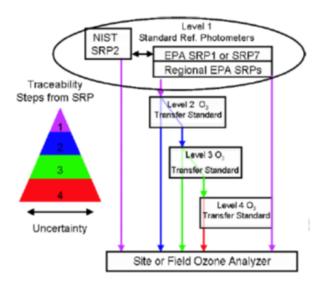


Figure 1 – Ozone Transfer Standard Hierarchy

1.5 Instrument Description

The major components of the Serinus Cal 300 are described below in Figure 2.

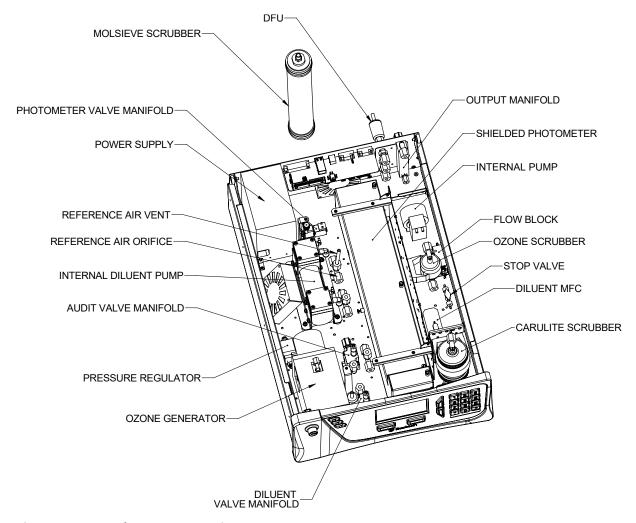


Figure 2 – Internal Components Diagram

The Serinus Cal 300 provides both an ozone generator and an ozone photometer to measure the concentrations created. A feedback control algorithm allows the main controller PCA to adjust the output from the ozone generator so that a precise concentration of ozone is produced. This allows the Serinus Cal 300 to be used as a transfer standard for calibration of ozone analysers.

1.5.1.1 Main Controller PCA

The main controller PCA controls all the processes within the instrument. As well as the on-board microprocessor, it contains a battery backed clock-calendar, analog to digital converters and many other circuits for signal processing and control. The ambient pressure and chassis temperature sensors are also located on this board. The main controller PCA is located above all other components within the instrument. It pivots on hinges to allow access to the components underneath.

CAUTION

Never place objects on top of the main controller PCA as it may result in damage.

1.5.1.2 Rear Panel PCA

The rear panel PCA contains all the communications connections for the user through the rear panel. This PCA also controls all the internal solenoid bullet valves as well as the diluent control. This PCA has its own power connection directly from main controller PCA.

1.5.1.3 Solenoid Valves

The solenoid valves control the flow path of the instrument. V4 is the Audit valve, V8 is the photometer valve and V13 is the diluent valve. They are designated the same in the instrument firmware. In their energised state or "ON" state a red led lights up on the tip of the valve and this makes troubleshooting faulty valve states very easy. V4 and V13 are bullet valves, shown in Figure 4. V8 is made from material better compatible with the photometer. Refer to Figure 5.

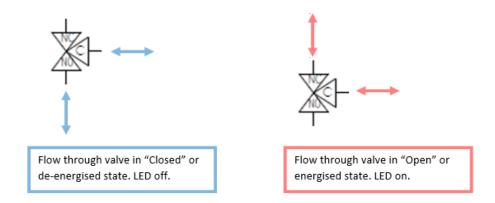


Figure 3 - Solenoid Valve Operation

Figure 4 – Solenoid Bullet Valve

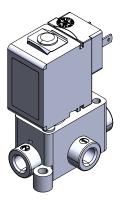


Figure 5 – Photometer Diaphragm Valve

1.5.1.4 Pressure PCA

The Serinus Cal 300 has a pressure sensor installed on the main controller PCA to monitor the ambient pressure. An additional differential pressure sensor is installed on the ozone generator assembly to monitor the output flow. Lastly there are two more ambient pressure sensors installed on the photometer assembly and on the flow block to monitor the flow through the photometer.

1.5.1.5 Power Supply

The power supply is a self-contained unit housed in a steel case designed to meet all the relevant safety and EMC requirements. This power supply is auto ranging.

The output of the power supply provides +12 V, +5 V, -12 V and +3.3 V to the instrument.

1.5.1.6 On/Off Switch

Located on the back panel, bottom right facing the rear of the instrument, (refer to Figure 16), it is part of the power supply.

1.5.1.7 Diluent MFC

Diluent mass flow controller (MFC) is a device that is used to measure and control the flow of gases at a particular flow rate. It is controlled by the main controller PCA and is used to give the user the desired output concentration as defined in the point setup.

1.5.1.8 DFU

A disposable filter unit (DFU) is used to protect the MFC's and other pneumatic system components from a build-up of particulate matter.

1.5.1.9 Output Manifold

The output manifold is a common set of ports used as the conduit for delivering the final user defined diluted gas concentration to its final destination. When the gas leaves the calibrator it will be at ambient pressure. This is achieved by always allocating one of the 4 common ports as a vent leading to atmosphere.

1.5.1.10 Photometer Valve Manifold

The photometer valve manifold is used to switch between sampling reference air and sample air from the output manifold. In the plumbing schematics it is referred to as V8.

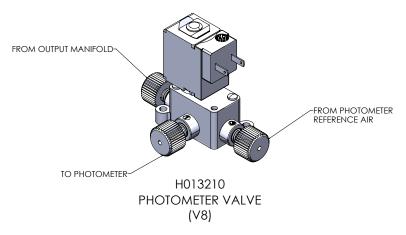


Figure 6 – Photometer Valve Manifold

1.5.1.11 Diluent Valve Manifold

The diluent valve manifold is used to switch between internal and external diluent air. In the plumbing schematics it is referred to as V13.

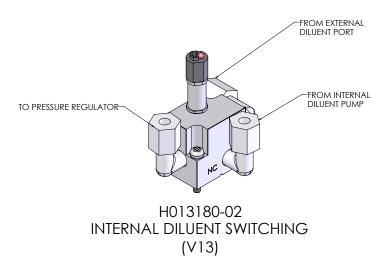


Figure 7 - Diluent Valve Manifold

1.5.1.12 Audit Valve Manifold

The audit valve manifold is used to switch between sampling ozone produced by the ozone generator and an external ozone source for auditing purposes. In the plumbing schematics it is referred to as V4.

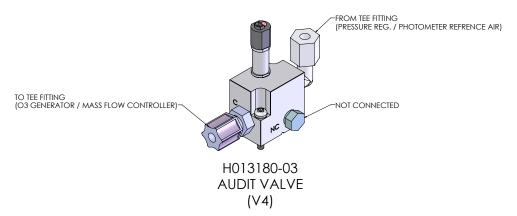


Figure 8 - Audit Valve Manifold

1.5.1.13 Ozone Generator

The ozone generator consists of a pressurized chamber, ozone producing ultraviolet lamp, heater thermistor assembly, pressure sensor, gas inlet and outlet, fittings and ozone generator controller PCA. Together these components produce ozone which is fed into the ozone mixing manifold. The entire assembly is insulated for temperature stability.

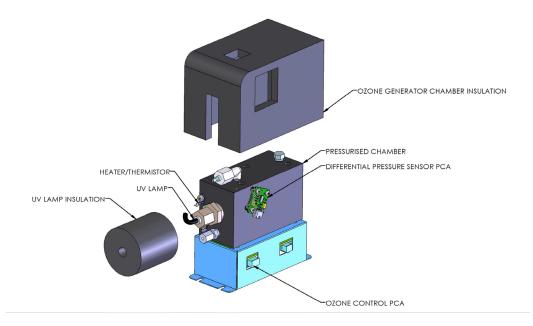


Figure 9 - Ozone Generator Assembly

1.5.1.14 Pressure Regulator – Ozone Generator

The pressure regulator is factory set to approximately 120-180 kPa. The pressure regulator maintains a constant pressure for the critical orifice and MFC within the instrument. Enabling the instrument to provide stable ozone flow, diluent flow and reference air flow.

1.5.1.15 Internal Pump

The internal pump draws a sample of generated ozone from the output manifold, through the shielded photometer assembly to be measured before scrubbing the ozone and passing it through the pump and out the exhaust port.

1.5.1.16 Ozone Scrubber

The ozone scrubber is used to protect the internal pump.

Figure 10 - Ozone Scrubber

1.5.1.17 Stop Valve

The stop valve is used to isolate the internal pump from the rest of the system during a leak check. The internal pump is known to leak through the pump.

1.5.1.18 Flow Block

The flow block measures the downstream pressure created by the pressure drop caused by the internal pump and the critical orifice. The pump speed is controlled by the main controller PCA in order to maintain sufficient pressure drop across the critical orifice within the shielded photometer assembly. This ensures that a stable photometer flow is maintained.

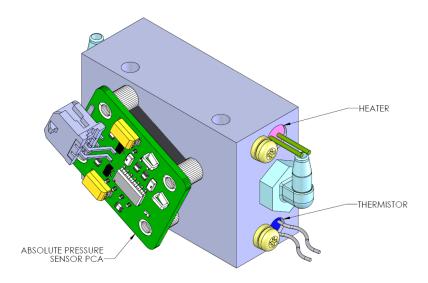


Figure 11 - Flow Block Assembly

1.5.1.19 Internal Diluent Pump

The internal diluent pump is used in conjunction with the Molsieve scrubber, Carulite scrubber and DFU to provide clean dry pressurised air for the system. Once it passes through the Carulite scrubber it becomes diluent air. The internal diluent pump is protected by a pressure relief valve on the pump outlet.

1.5.1.20 Carulite Scrubber

The Carulite scrubber is used to create diluent air from the clean dry air supplied from the Molsieve scrubber, which gets drawn in by the internal diluent pump. The output of the Carulite scrubber is filtered by a DFU to prevent stray particulate from blocking the pump and diluent valve manifold.

1.5.1.21 Molsieve Scrubber

The Molsieve scrubber is used to dry the air before being drawn in by the internal diluent pump. The DFU is used to protect the internal diluent pump from any stray particulate matter from the Molsieve scrubber. The Molsieve scrubber holds two types of media, one is the main drying material (cream coloured balls) and the other is an indicating gel (orange coloured balls). Both media types dry the air. Once the scrubber is saturated the orange indicating gel changes colour to clear. This lets you know when to change the scrubber.

1.5.1.22 Reference Tee

The reference tee has the reference air vent at the top of the tee and holds the reference air orifice used for flow control on the front panel side of the tee.

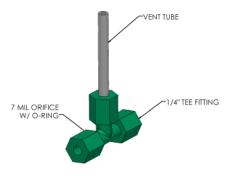


Figure 12 - Reference Tee

1.5.1.23 Shielded Photometer Assembly

The shielded photometer assembly consists of an Optical Cell, Ozone Detector PCA, Pressure PCA, UV Lamp, Lamp Driver PCA, Heater, Thermistor, Orifice and Measurement Cell Shield Cover. It is a non-dispersive ultraviolet (UV) photometer which switches between measuring ozone from the output manifold and reference air. It calculates the ratio of transmitted light between the two signals providing an accurate and reliable measure of ozone concentration.

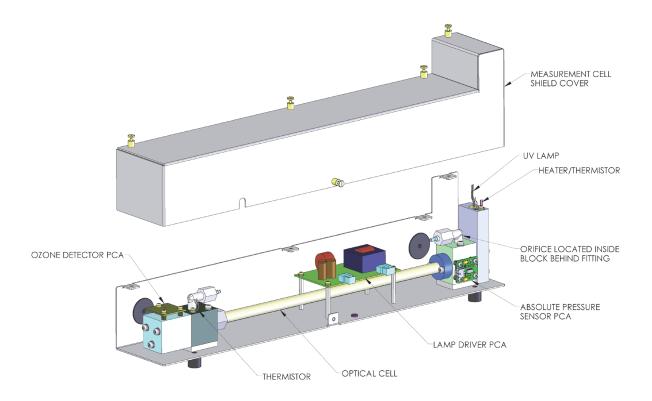


Figure 13 - Shielded Photometer Assembly

1.5.1.24 Optical Cell

The optical cell is a glass tube with a UV source at one end and a detector at the other. UV radiation is sequentially absorbed by ozone gas and background air over the length of the absorption cell. The remaining light reaching the detector is measured and used to calculate the O_3 concentration. The optical cell is protected by a metal sheath.

1.5.1.25 Ozone Detector PCA

The detector is a solar blind vacuum diode sensitive only in the spectral region where O_3 absorbs UV light at 254 nm. This detector is used to monitor the intensity of the residual light after absorption in the optical cell. The detector PCA converts this intensity into a voltage level which is processed by the main controller PCA to calculate the O_3 concentration.

1.5.1.26 UV Lamp

The UV source is a mercury vapour lamp that emits radiation around 254 nm. It is powered by the lamp driver PCA.

1.5.1.27 Lamp Driver PCA

The lamp driver PCA generates a high voltage (800-1100 V), high frequency voltage to start and maintain the UV lamp at a constant intensity. The lamp current is fixed at 10 mA. The lamp driver PCA is located under the UV absorption cell.

CAUTION

The lamp driver PCA contains high voltages. Ensure instrument is turned off before accessing this component.

Note: The lamp driver PCA is the same type as used on the Serinus $50 \, SO_2$ Analyser. For the Serinus Cal 300 (which measures Ozone), with a REV D lamp diver PCA, set all the jumpers marked in red (JP1 – JP5) to the right (refer to Figure 14). The correct setting must be used or damage to the electronics may occur.

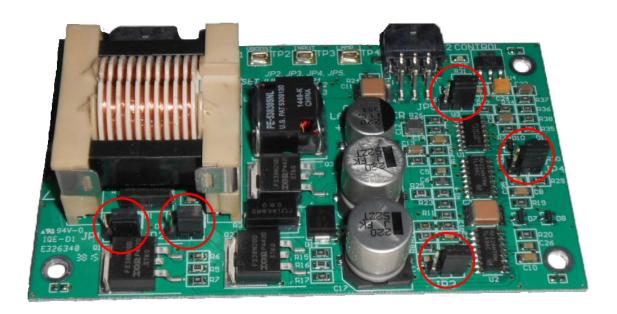


Figure 14 – Lamp Driver PCA Type Jumper Settings (REV D)

1.5.1.28 Heater and Thermistor

The heater and thermistor are located on the lamp housing end of the photometer assembly and is used to keep the block temperature to a stable and constant 50 °C.

This page is intentionally blank

2. Installation

2.1 Initial Check

2.1.1 Packaging

The Serinus Cal 300 is transported in packaging which is specifically designed to minimise the effects of shock and vibration during transportation. Ecotech recommends that the packaging be kept if there is a likelihood that the instrument is going to be relocated.

Note: The red plastic caps that seal the pneumatic connections during transport must be removed prior to operation.

2.1.2 Opening the Instrument

Check the interior of the instrument with the following steps:

- 1. Undo the screws located on the rear panel.
- 2. Open the chassis lid by releasing the latch (pressing the button) located on the front panel in the top left-hand corner, then slide the lid backwards.
- 3. To completely remove the lid, slide the lid backwards until the rollers line up with the gaps in the track and pull the lid upwards to remove from the instrument (refer to Figure 15).
- 4. Check that all pneumatic and electrical connectors are connected.
- 5. Check for any visible and obvious damage. If damage exists contact your supplier and follow the instructions in Claims for Damaged Shipments and Shipping Discrepancies at the front of this manual.

Figure 15 – Opening the Instrument

2.1.3 Items Received

With the delivery of the Serinus Cal 300, you should have received the following:

• Ecotech Serinus Cal 300 PN: E020300

Green Ecotech Resources USB Stick
 PN: H030137-01

Manual PN: M010059 (hardcopy optional)

USB memory stick
 FQA Kit, Serinus Cal
 Power Lead (120 V)*
 US
 PN: H030021
 PN: H050080
 PN: C040007

Power Lead (240 V)* Australia PN: C040009

Europe PN: C040008

UK PN: C040010

Note: Please check that all these items have been delivered undamaged. If any item appears damaged, please contact your supplier before turning the instrument on.

2.2 Installation Notes

When installing the instrument the following points must be taken into account:

- The Serinus Cal 300 should be placed in an environment with minimal dust, moisture and variation in temperature (20-30 °C for U.S. EPA designated range).
- For best results the Serinus Cal 300 should be located in a temperature and humidity controlled environment (air conditioned shelter). An enclosure temperature of 25-27 °C is optimum.
- Whether in a rack or placed on a bench, the instrument should not have anything placed on top of it or touching the case.
- Instruments should be sited with easy access to the front panel (instrument screen/USB memory stick and to the back panel (communication ports/pneumatic connections).
- It is recommended that the pneumatic lines be as short as possible.
- When supplying calibration gas to other instruments through the output ports, ensure the flow is not pressurised and is sufficiently vented to ambient pressure.
- The Fan on the rear panel should be kept free of any obstructions.

Note: The power on/off switch is accessible from the rear of the instrument only. Site the calibrator so that the on/off power switch is accessible.

2.3 Instrument Set-up

After unpacking the instrument, the following procedures should be followed to ready the calibrator for operation.

^{*}The power lead received depends on the power supply of the country (120 V or 240 V).

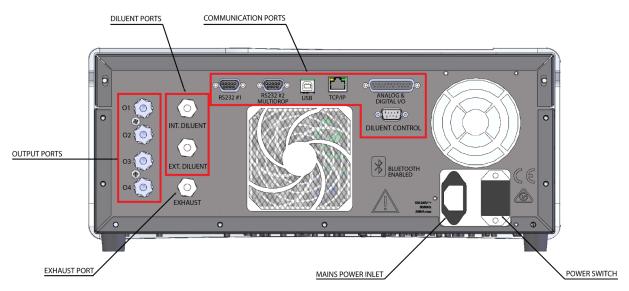


Figure 16 - Serinus Cal 300 Rear Panel

2.3.1 Setting-up a Serinus Cal 300

- 1. Open the lid and install the USB memory stick (refer to Figure 17).
- 2. Check the battery switch is turned to on. It is located under the main controller PCA (refer to Figure 18).
- 3. Close the lid.
- 4. Connect the output ports **O1 O3** to your test analysers. **Plug any unused output ports.**
- 5. Connect tubing to the output **O4** and vent end of line away to atmosphere.
- 6. Turn on the instrument and allow it to warm-up.
- 7. Connect a source of Diluent air to the Ext. Diluent port if running in a lab type installation (running over a long period) and open the Quick Menu and change the Internal diluent to Disabled or connect a Molsieve scrubber (chemical dryer with indicator) to the Int. Diluent port if using as a portable transfer standard (run for a short period) and open the Quick Menu and change the Internal diluent to Enabled.
- 8. Set the internal data logging options (refer to Section 3.5.35).
- 9. Check/set time and date (refer to Section 3.5.17).
- 10. Configure the analog input and output settings and digital outputs settings if used (refer to Section 3.5.36).
- 11. Set the communication parameters to your chosen communication method (refer to Section 3.5.34).
- 12. Let the instrument warm-up and stabilise for 2-3 hours before operation.
- 13. The instrument is now ready to be operated.

Figure 17 – Installation of USB Memory Stick

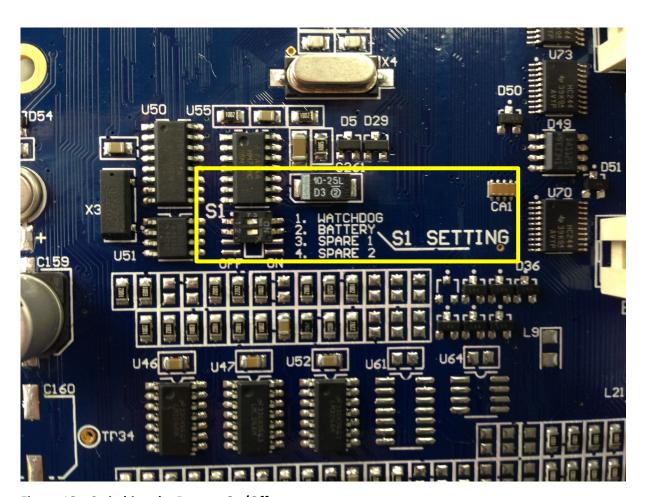


Figure 18 – Switching the Battery On/Off

2.3.2 Pneumatic Connections

The Serinus Cal 300 features several pneumatic ports on the back panel; the output port(s), the internal diluent port, the external diluent port and the exhaust port. All tubing and fittings used should follow the instructions below:

- 1. Must be made of Teflon® FEP material, Kynar®, stainless steel, glass or any other suitably inert material.
- 2. Calibration lines should be kept to a minimum length.

- 3. Exhaust line for the Serinus Cal 300 should be no more than 2 meters in length with ID, ¼ inch. If longer is required, use ID 3/8 inch.
- 4. Tubing must be cut squarely and any burrs removed.
- 5. Remove the inlet/outlet port nut, insert the tubing through the back of the nut with the tube extending 1 inch through the front.
- 6. Place the tubing into the port until it hits the tube stop located inside the fitting.
- 7. Place the nut back onto the fitting and tighten clockwise until finger tight.
- 8. Nuts should be re-tightened when instrument reaches operating temperature.

2.3.3 Power Connection

CAUTION

- Hazardous voltages exist within the instrument. Do not remove or modify any of the internal components or electrical connections whilst the mains power is on.
- Always unplug the equipment prior to removing or replacing any components.
- Do not replace the detachable mains supply cord with an inadequately rated cord. Any mains supply cord that is used with the instrument must comply with the safety requirements (250V/10A minimum requirement).
- Ensure that the mains supply cord is maintained in a safe working condition

CAUTION

When connecting the mains power to the instrument, the following must be adhered to otherwise the safety and the reliability of the instrument may be compromised.

- A three pin mains power lead with a protective earth conductor MUST be used
- The mains power outlet (wall socket) must be in the range of 100 to 240 VAC, 50 to 60 Hz
- The mains power outlet must be protected by an earth leakage protection circuit
- Connect the mains power lead into the mains power outlet and turn the power switch on

2.3.4 Internal Diluent

The Serinus Cal 300 features an internal diluent port (Int. Diluent) which is typically used to provide clean, unreactive gas used by the ozone generator to generate ozone and as reference air for the photometer. The Diluent air is achieved by connecting a chemical dryer to the port with an inline disposable filtration unit (DFU). Once connected, an internal pump draws air through the chemical dryer (external), Carulite scrubber (to remove ozone and other interferent gases) and then a DFU. It is then pressurised to supply the MFC. The internal diluent pump is protected by a pressure relief valve.

2.3.5 External Diluent

The Serinus Cal 300 features an external diluent port (Ext. Diluent) which is typically used to provide clean, unreactive gas used by the ozone generator to generate ozone and as reference air for the photometer.

CAUTION

Dry, clean and filtered diluent gas should be supplied to the Serinus Cal at a regulated pressure of between 17 and 26 psig (120 kPa – 180 kPa). Damage will occur if the pressure exceeds 40 psig (275 kPa).

2.3.6 Output Ports

There are four output gas ports available on the Serinus Cal 300, labelled O1 to O4. Diluted Ozone gas is sent to each of the four output ports. Chemically inert Kynar fittings have been used and should be finger tight only. If any of the output ports are not used, they should be sealed with the supplied Kynar blanking nut. One of the output ports must be connected to vent in order to avoid pressurising the unit. Damage to the equipment may occur if the output pneumatic system is pressurised.

CAUTION

One of the output ports must be connected to the vent in order to avoid pressuring the unit.

2.3.7 Exhaust Port

The exhaust of the internal photometer pump is vented out of this port. The exhaust port must be connected to an exhaust manifold venting to a suitable location outside the room and away from the sample inlets of gas analysers in the system.

CAUTION

It is recommended that exhaust air is not expelled into a shelter/room inhabited by people. It should be expelled into the external air with sufficient distance away from the sample inlet of gas analysers.

2.3.8 Communications Connections

There are a number of ways to communicate with the instrument. The user can use the supplied Airodis software to access the instrument and download data. The Airodis software is supplied on the green resources USB stick provided with this instrument. Other data logging software such as Ecotech's Congrego can also be used to control and setup the instrument.

RS232 #1

Connect this port to a data logger (such as Congrego) with an RS232 cable.

RS232 #2

Connect the RS232 cable from the instrument to a computer, data logger or in a multidrop formation.

Note: When using multidrop ensure each instrument is given a unique instrument ID.

USB

Connect a standard type B USB cable (supplied with the instrument) to this port.

TCP/IP (optional)

Plug in an ethernet cable (this cable should be attached to a network).

Analog/Digital

This port is used to send and receive analog and digital signals between instruments. It is normally used to connect with a gas analyser or data logger to activate calibration points and sequences.

Each instrument contains 8 digital inputs, 8 digital outputs, 3 analog inputs and 1 analog output.

Diluent Control

This port is used to control an external Zero Air Generator (such as the Ecotech 8301LC) by providing a 12 V signal when the Diluent is required.

Bluetooth

Connection is enabled using Ecotech's Serinus remote Android application.

Use the Serinus remote Android application to access instrument and download data. It is available for download directly from the Google Play Store. Search for 'Ecotech Serinus Remote'.

2.4 Transporting/Storage

Transporting the Serinus Cal 300 should be done with great care. It is recommended that the packaging the Serinus Cal 300 was delivered in should be used when transporting or storing the instrument.

When transporting or storing the instrument the following points should be followed:

- Turn off the instrument and allow it to cool down.
- 2. Remove all pneumatic, power and communication connections.
- 3. If storing over a long period (6 months) turn the battery off by switching the switch (S1) on the main controller PCA to off (refer to Figure 18).
- 4. Remove the instrument from the rack.
- 5. Replace the red plugs into the pneumatic connections.
- 6. Remove the USB memory stick and pack with instrument (refer to Figure 17).
- 7. Place the instrument back into a plastic bag with desiccant packs and seal the bag (ideally the bag it was delivered in).
- 8. Place the instrument back into the original foam and box it was delivered in. If this is no longer available find some equivalent packaging which provides protection from damage.
- 9. The instrument is now ready for long term storage or transportation.

This page is intentionally blank

3. Operation

3.1 Warm-Up

The Serinus Cal 300 requires a warm up period before it can execute a photometer point. During this period, the instrument will adjust itself to prepare for monitoring. Other functions are available immediately at start up.

The following activities occur during Serinus Cal 300 warm-up:

Lamp Adjust

The instrument automatically adjusts the lamp's current (10 mA) for a stable (reference voltage) signal/output (2 minutes).

Ref Stabilise

The instrument sets the reference voltage to 2.8 - 3.2 V output and waits for a stable output signal.

Zero Adjust

The instrument sets the course and fines zero pots for a zero detector output.

Zero Stabilise

The instrument waits until the zero voltage signals are stable.

After this warm-up has completed the Serinus Cal 300 can execute photometer points.

3.2 Theory of Operation

The Serinus Cal 300 operates by using definitions of points and sequences.

From the **Points and Sequencing Menu** points can be defined. A point is a user-defined configuration of gas flows. Up to 32 points can be defined and named. Each point can perform one of three types of operation (Zero Point, O3 Generator or O3 Gen/Photometer), utilizing different flows, and concentrations.

A sequence is a series of points. Up to 16 sequences can be defined. Each sequence can run up to 16 points for a user-specified amount of time. Sequences can also run other sequences as one of their actions, allowing for very complex series of points to be executed. The nesting of sequences can only go three levels deep before you will get a nesting error. To signify the end of a sequence you can select the repeat or idle action, which will repeat the sequence or place the Serinus Cal 300 into Idle.

Points or sequences can be initiated from the **Quick Menu** \rightarrow **Mode**, or they can be initiated remotely via digital inputs or serial commands.

For convenience there is a "Manual" point. This is exactly like a point definition except it does not occupy one of the 32 named point definitions. It is useful for operating the machine in an immediate mode where flow and concentration changes can be done on the fly. Points created in manual mode can be copied to a point number and given a name when the user wants to keep it long term and is satisfied.

3.2.1 Running a Point or Sequence

Initially the Serinus Cal 300 requires several steps to be followed in order to run an automatic point or sequence.

- Program points in the Points & Sequencing Menu
- Program sequences (if applicable) in the Points & Sequencing Menu
- Start the desired point or sequence by accessing the Quick Menu → Mode and selecting point or sequence

3.2.2 Operation

When defining a point, you first need to select an operation. The Serinus Cal 300 has three operations, Zero Point, O3 Generator and O3 Gen/Photometer. The following sections give examples of each type of operation and how set them up.

3.2.2.1 Zero Point

Step by Step Example:

1. Return to the **Home Screen** (the user can press the bottom status light (green)).

Note: There are some menu items that will not be used in the steps, an explanation is given at the end of the example. **Define Point Menu** has 32 available programmable points.

- 2. Open Main Menu → Points & Sequences Menu → Define Points Menu.
- 3. Edit Point 10.
- 4. Edit **Name** (give the point a name that will help distinguish it from the others, for this example we will be using "EXE 00") Accept.
- 5. Select Operation Zero Point Accept.
- 6. Edit **Flow** (set to the flow to the value required for the instruments connected to the output manifold, for this example we will set it to 3.0 slpm) Accept.
- 7. Return to the **Home Screen** (the user can press the bottom status light (green)).
- 8. This Point is now configured correctly and can be started automatically (via serial commands or digital bits) or manually (via the **Quick Menu**).
- 9. Open Quick Menu.
- 10. Select Mode Point Accept EXE 00 Accept.

Note: Some of the menu items in the **Define Point Menu** that were not discussed were the 'Copy From...', 'Input Mask' and 'Output Mask'. The 'Copy From...' feature can be used make quick copies of existing points that are similar or that were developed in **Manual Point Menu**. The 'Input Mask' and 'Output Mask' relate to the two lots of eight digital bits that can be used to automatically start points (digital input) and give a digital output to give an indication or control other instruments or relays (digital output).

3.2.2.2 O3 Generator

Step by Step Example:

1. Return to the **Home Screen** (the user can press the bottom status light (green)).

Note: There are some menu items that will not be used in the steps, an explanation is given at the end of the example. **Define Point Menu** has 32 available programmable points.

- 2. Open Main Menu → Points & Sequences Menu → Define Points Menu.
- 3. Edit Point 1.
- 4. Edit **Name** (give the point a name that will help distinguish it from the others, for this example we will be using "EXE 01") Accept.
- 5. Select Operation O3 Generator Accept.
- 6. Edit **Flow** (set to the flow to the value required for the instruments connected to the output manifold, for this example we will set it to 3.0 slpm) Accept.
- 7. Off **Zero Point** Off (this will allow the Ozone generator to produce ozone).
- 8. Select **Units** (this will be the units that are displayed on the home screen, for this example we will select "ppb") Accept.
- 9. Edit **Set Point** (this is where the user can set the concentration required from the Ozone Generator. For this example we will select "350 ppb") Accept.

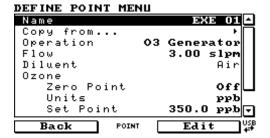


Figure 19 - O3 Generator Setup

- 10. Return to the **Home Screen** (the user can press the bottom status light (green)).
- 11. This Point is now configured correctly and can be started automatically (via serial commands or digital bits) or manually (via the **Quick Menu**).
- 12. Open Quick Menu.
- 13. Select Mode Point Accept EXE 01 Accept.

Note: Figure 20 shows the Home Screen with the Serinus Cal 300 automatically controlling the dilution and ozone flow to give you your total flow requested in the point definition.

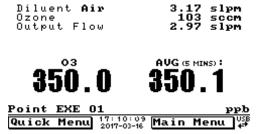


Figure 20 - Home Screen Running EXE 01 Point

Note: Some of the menu items in the **Define Point Menu** that were not discussed were the 'Copy From...', 'Input Mask' and 'Output Mask'. The 'Copy From...' feature can be used make quick copies of existing points that are similar or that were developed in **Manual Point Menu**. The 'Input Mask'

and 'Output Mask' relate to the two lots of eight digital bits that can be used to automatically start points (digital input) and give a digital output to give an indication or control other instruments or relays (digital output).

3.2.2.3 O3 Gen/Photometer

Step by Step Example:

1. Return to the Home Screen (the user can press the bottom status light (green)).

Note: There are some menu items that will not be used in the steps, an explanation is given at the end of the example. **Define Point Menu** has 32 available programmable points.

- 2. Open Main Menu → Points & Sequences Menu → Define Points Menu.
- 3. Edit Point 2.
- 4. Edit **Name** (give the point a name that will help distinguish it from the others, for this example we will be using "EXE 02") Accept.
- 5. Select Operation O3 Gen/Photometer Accept.
- 6. Edit **Flow** (set to the flow to the value required for the instruments connected to the output manifold, for this example we will set it to 3.0 slpm) Accept.
- 7. Off Zero Point Off (this will allow the Ozone generator to produce ozone).
- 8. Select **Units** (this will be the units that are displayed on the home screen, for this example we will select "ppb") Accept.
- 9. Edit **Set Point** (this is where the user can set the concentration required from the Ozone Generator. For this example we will select "350 ppb") Accept.

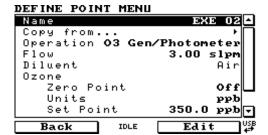


Figure 21 – O3 Gen/Photometer Setup

- 10. Return to the **Home Screen** (the user can press the bottom status light (green)).
- 11. This Point is now configured correctly and can be started automatically (via serial commands or digital bits) or manually (via the **Quick Menu**).
- 12. Open Quick Menu.
- 13. Select Mode Point Accept EXE 02 Accept.

Note: Figure 22 shows the Home Screen with the Serinus Cal 300 automatically controlling the dilution and ozone flow to give you your total flow requested in the point definition.

Diluent Air 3.17 slpm Ozone 101 sccm Output Flow 2.97 slpm

350.0 350.1

Point EXE 02 ppb

Quick Menu | 13:36:11 | Main Menu | Use

Figure 22 – Home Screen Running EXE 02 Point

Note: Some of the menu items in the **Define Point Menu** that were not discussed were the "Copy From...", "Input Mask" and "Output Mask". The "Copy From..." feature can be used make quick copies of existing points that are similar or that were developed in **Manual Point Menu**. The "Input Mask" and "Output Mask" relate to the two lots of eight digital bits that can be used to automatically start points (digital input) and give a digital output to give an indication or control other instruments or relays (digital output).

3.2.2.4 Sequence

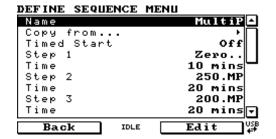
Once you have defined some points you can define a sequence. A sequence is a collection of defined points connected by steps. Each step has duration and uses the point definition. The end of the sequence is defined by either Idle, repeat or using up all 16 steps. The steps don't always need to be points they can be linked to other sequences, allowing nested sequences. This method can only go three sequences deep before you get a nesting error. The following example demonstrates an ozone multipoint linearization check with a zero before and after.

Step by Step Example:

Point Setup

- 1. Open Main Menu → Points & Sequences Menu → Define Points Menu.
- 2. Edit Point 3.
- 3. Edit **Name** (give the point a name that will help distinguish it from the others, for this example we will be using "50..MP") Accept.
- 4. Select Operation O3 Generator Accept.
- 5. Edit **Flow** (set to the flow to the value required for the instruments connected to the output manifold, for this example we will set it to 3.0 slpm) Accept.
- 6. Off Zero Point Off (this will allow the Ozone generator to produce ozone).
- 7. Select **Units** (this will be the units that are displayed on the home screen, for this example we will select "ppb") Accept.
- 8. Edit **Set Point** (this is where the user can set the concentration required from the Ozone Generator. For this example we will select "50 ppb") Accept.
- 9. Back Main Menu → Points & Sequences Menu → Define Points Menu.
- 10. Edit Point 4.
- 11. Copy Copy from... (select "50..MP") Accept.
- 12. Edit **Name** (give the copied point a name that will help distinguish it from the others, for this example we will be using "100.MP") Accept.

- 13. Edit **Set Point** (this is where the user can set the concentration required from the Ozone Generator. For this example we will select "100 ppb") Accept.
- 14. Back Main Menu → Points & Sequences Menu → Define Points Menu.
- 15. Edit Point 5.
- 16. Copy Copy from... (select "100.MP") Accept.
- 17. Edit **Name** (give the copied point a name that will help distinguish it from the others, for this example we will be using "150.MP") Accept.
- 18. Edit **Set Point** (this is where the user can set the concentration required from the Ozone Generator. For this example we will select "150 ppb") Accept.
- 19. Back Main Menu → Points & Sequences Menu → Define Points Menu.
- 20. Edit Point 6.
- 21. Copy **Copy from...** (select "150.MP") Accept.
- 22. Edit **Name** (give the copied point a name that will help distinguish it from the others, for this example we will be using "200.MP") Accept.
- 23. Edit **Set Point** (this is where the user can set the concentration required from the Ozone Generator. For this example we will select "200 ppb") Accept.
- 24. Back Main Menu → Points & Sequences Menu → Define Points Menu.
- 25. Edit Point 7.
- 26. Copy Copy from... (select "200.MP") Accept.
- 27. Edit **Name** (give the copied point a name that will help distinguish it from the others, for this example we will be using "250.MP") Accept.
- 28. Edit **Set Point** (this is where the user can set the concentration required from the Ozone Generator. For this example we will select "250 ppb") Accept.
- 29. Back Main Menu → Points & Sequences Menu → Define Points Menu.
- 30. Edit Point 8.
- 31. Copy Copy from... (select "250.MP") Accept.
- 32. Edit **Name** (give the copied point a name that will help distinguish it from the others, for this example we will be using "Zero..") Accept.
- 33. On Zero Point On (this will disable the Ozone generator an only produce zero air).
- 34. Return to the **Home Screen** (the user can press the bottom status light (green)).


Sequence Setup

- 1. Open Main Menu → Points & Sequences Menu → Define Points Menu.
- 2. Edit Sequence 1.
- 3. Edit **Name** (give the point a name that will help distinguish it from the others, for this example we will be using "MultiP") Accept.
- 4. Edit Step 1 (change from Idle to Point) (select "Zero..") Accept.
- 5. Edit **Time** (For this example we will use 10 mins) Accept.

- 6. Edit Step 2 (change from Idle to Point) Accept (select "250.MP") Accept.
- 7. Edit Time (for this example we will use 20 mins) Accept.
- 8. Edit Step 3 (change from Idle to Point) Accept (select "200.MP") Accept.
- 9. Edit Time (for this example we will use 20 mins) Accept.
- 10. Edit Step 4 (change from Idle to Point) Accept (select "150.MP") Accept.
- 11. Edit Time (for this example we will use 20 mins) Accept.
- 12. Edit Step 5 (change from Idle to Point) Accept (select "100.MP") Accept.
- 13. Edit Time (for this example we will use 20 mins) Accept.
- 14. Edit Step 6 (change from Idle to Point) Accept (select "50..MP") Accept.
- 15. Edit Time (for this example we will use 20 mins) Accept.
- 16. Edit Step 7 (change from Idle to Point) Accept (select "Zero..") Accept.
- 17. Edit Time (for this example we will use 20 mins) Accept.

Note: the next step (step 8) will default to Idle. This will indicate the end of the sequence, no adjustment is required by the user.

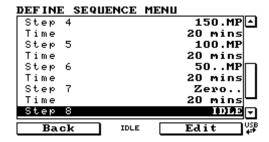


Figure 23 – Multipoint Sequence Setup

- 18. Return to the **Home Screen** (the user can press the bottom status light (green)).
- 19. This Sequence is now configured correctly and can be started automatically (via serial commands or digital bits) or manually (via the **Quick Menu**).
- 20. Open Quick Menu.
- 21. Select Mode Sequence Accept MultiP Accept.
- Once a sequence is running you can use the **Mode** feature in the **Quick Menu** to Pause, Skip, Rewind or Stop.

3.3 General Operation Information

3.3.1 Keypad & Display

The Serinus Cal 300 is operated with the use of 4 sets of buttons:

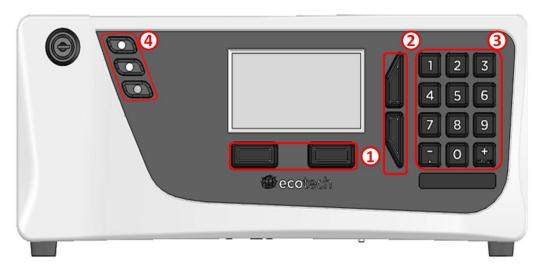


Figure 24 - Front Panel

Selection Buttons (1)

The selection buttons will perform the function specified directly above it on the screen. Generally this involves opening a menu, editing a value, accepting or cancelling an edit, or starting an operation.

Scrolling Buttons (2)

The scrolling buttons allow users to scroll up and down through menus or selection boxes. The scrolling buttons are also used to scroll side to side through editable fields such as: dates, times, numbers etc.

On the main screen these buttons are used for adjusting the screen contrast. Press and hold the up button to increase contrast; press and hold the down button to decrease.

Keypad (3)

The keypad contains the numbers 0-9, a decimal point/minus key ($\bar{}$) and a space/plus key ($\bar{}$).

In the few cases where letters can be entered, the number keys act like a telephone keypad. Every time a number key is pressed, it cycles through its choices. The up/down arrow keys scroll through all the numbers and the entire alphabet.

```
1 = 1 or space
```

2 = 2, A, B, C, a, b, c

3 = 3, D, E, F, d, e, f

4 = 4, G, H, I, g, h, i

5 = 5, J, K, L, j, k, l

6 = 6, M, N, O, m, n, o

7 = 7, P, Q, R, S, p, q, r, s 8 = 8, T, U, V, t, u, v 9 = 9, W, X, Y, Z, w, x, y, z 0 = 0 or space

The $\binom{+}{\mathrm{SPACE}}$ and key $(\overline{\cdot})$ button functions depend on context. When editing a floating point number, the key $(\overline{\cdot})$ inserts a negative sign if the editing cursor is at the start of the number and negative signs are allowed. Otherwise it moves the decimal place to the current cursor location. The $\binom{+}{\mathrm{SPACE}}$ key inserts a positive sign if the cursor is at the start of the number; otherwise it enters a space. For non-floating point numbers, these keys usually increment or decrement the current value by 1. When editing the month field of a date, the $\binom{+}{\mathrm{SPACE}}$ and $\binom{-}{\cdot}$ key change the month.

Instrument Status Light Buttons (4)

Located in the top left corner, these lights indicate the status of the instrument as a whole.

- A red light indicates that the instrument has a major failure and is not functioning.
- An orange light indicates there is a minor problem with the instrument, but the instrument may still take measurements reliably.
- A green light indicates that the instrument is working and there are no problems.

In the case of an orange or red light enter the Status Menu to find which components are failing (refer to Section 3.5.13) or pressing the orange or red light when illuminated will bring up a pop up box with a full list of current faults.

Pressing the green status light button at any time will cancel any open edit box or menu and return the user to the home screen.

If no instrument status lights are on and the keypad is backlit, this indicates that the instrument is running the bootloader. The screen will also indicate that it is in bootloader menu.

3.4 Home Screen

The Home Screen is composed of six parts: Readings (1), Concentrations (2), Error Line (3), Status Line (4), Selection Buttons (5), Time and Date (6), USB Detection (7), Concentration Units (8).

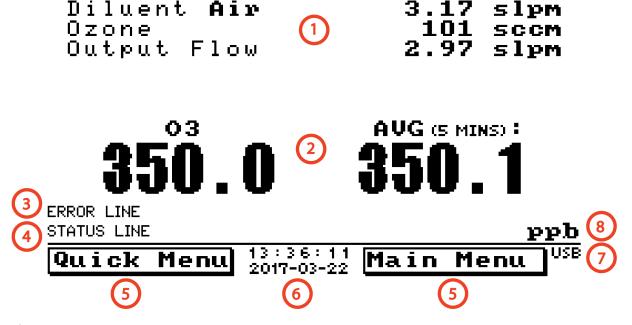


Figure 25 - Home Screen

Readings (1)

Displays the flow of each flow control device currently available in the system. The total flow distributed to the output port is also displayed.

Concentrations (2)

Displays concentration of each gas defined in the gas standard, which is currently being delivered to the output port.

Error Line (3)

The error line provides users with information on any problems the instrument may have. It displays the highest priority error condition contained in the Status menu.

Status Line (4)

The status line provides users with information on the current status of the instrument.

If a defined point or sequence is running, the name will appear on this line, along with the remaining time (in minutes) for the current point when running a sequence manual point.

Selection Buttons (5)

These buttons are used on the home screen to enter one of two menus. The **Quick Menu** (refer to Section 3.5.1) contains all information and features necessary for scheduled maintenance. The **Main**

Menu (refer to Section 3.5.3) contains all information and fields available to users and is generally only used during initial set-up and diagnostics.

The right button opens the **Main Menu** (refer to Section 3.5.3) contains all information and fields available to users and is generally only used during initial set-up and diagnostics.

Time and Date (6)

The time and date are displayed in between the menu buttons at the bottom of the screen.

USB Detection (7)

A USB symbol will be displayed in the bottom right corner when the USB memory stick is plugged in (the USB socket is behind the front panel). If the USB symbol is not shown the USB memory stick should be inserted. Underneath the USB symbol arrows may be displayed which indicates data transfer. The USB memory stick must not be removed whilst the arrows are visible.

Note: To safely remove the USB memory stick, navigate to the **Service Menu** and use the **Safely Remove USB Stick** function (refer to Section 3.5.24).

Concentration Units (8)

The instrument units are displayed in the bottom right hand corner of the display.

3.5 Menus & Screens

To begin using the Serinus Cal 300, a number of parameters must be programmed into the unit through the menu system. This section of the manual gives an overview of the menu system to the user. To access these items, press the Menu button while on the home screen.

In general, editable parameters are displayed in bold font. Non-editable information is displayed in a thin font.

Some parameters may become editable based on the state of the instrument.

Sub-menus will be indicated with a small arrow; pressing the right-hand button on these items will open a new menu or a dialog box.

3.5.1 Quick Menu

The Quick Menu contains all the maintenance tools in one easy to use screen. It allows operators to perform calibrations, check important parameters and review the service history.

Mode	Allows the user to select a mode of operation. Refer to Section 3.5.2
Event Log	This field enters a screen with a log of all the events that the instrument has performed. These events include errors and warnings. This log is stored on the removable USB memory stick.
	The log is organised by month. When you enter this screen you will be prompted to enter the month for which you wish to view events.

Point/Seq Log	This field enters a screen with a log of all the actions the calibrator has performed. Every time a point or sequence starts and stops, is edited, when a sequence repeats, when the mode is changed (e.g. idle, manual) and when the pause skip or rewind function is used. This log is stored on the removable USB memory stick. The log is organised by month. When you enter this screen you will be prompted to enter the month for which you wish to view actions.
Instrument	This field allows the instrument to be set to either Online (normal instrument operation) or In Maintenance (data is flagged as invalid).
Safely Remove USB Stick	Always select this menu item before removing the USB memory stick or select the same menu item from the Service Menu (refer to Section 3.5.24). Failure to do this may cause corruption of the memory stick.
Instrument Gain	Shows the user the instrument gain of the photometer.
Next Service Due	A field that notifies the user when the next instrument service is due. This value is editable in the Next Service Due field of the Advanced Menu (refer to Section 3.5.44). This field is only displayed in the 2 weeks prior to the date displayed in this field or after the date has occurred.
Internal Pump	Allows the user to turn the internal pump on and off.
Internal Diluent	When Disabled valve thirteen is switched to change the source of diluent air to an external source (Ext Diluent Port). When Enabled the diluent air is sourced Internally.

3.5.2 Mode

Quick Menu → Mode

Stop	The instrument stops all flows, closes all valves, and does not respond to any other input (manual, serial or digital).
Idle	The default state. The instrument is not running any points or sequences but will respond to any request to do so. Selecting this option from the Mode button will terminate any point or sequence currently active.
Point	The instrument is currently running a point. Selecting this option from the Mode button will allow the user to initiate a new point.
Sequence	The instrument is currently running a sequence. Selecting this option from the Mode button will allow the user to initiate a new sequence.
Pause [Running a Sequence]	The instrument is attempting to run a sequence but the user has asked it to pause. This means the instrument remains in the current point indefinitely (until resumed) instead of moving on to the next point once the count-down has expired.

Resume [Running a Sequence]	When a sequence is paused, opening the Mode button will allow the choice to resume. This continues the point's countdown from where it was paused.
Skip [Running a Sequence]	While running a sequence the Mode button can be used to skip ahead to the next point.
Rewind [Running a Sequence]	While running a sequence the Mode button can be used to rewind back to the previous point.

3.5.3 Main Menu

There are nine menus on the **Main Menu** screen.

Points & Sequencing Menu	Refer to Section 3.5.4.
Manual Operation Menu	Refer to Section 3.5.9.
Analyser State Menu	Refer to Section 3.5.12.
General Settings Menu	Refer to Section 3.5.17.
Measurement Settings Menu	Refer to Section 3.5.18.
Calibration Menu	Refer to Section 3.5.19.
Service Menu	Refer to Section 3.5.24.
Communications Menu	Refer to Section 3.5.34.
Trend Display Menu	Refer to Section 3.5.42.

3.5.4 Points & Sequencing Menu

Main Menu → Points & Sequencing Menu

Define Points Menu	Refer to Section 3.5.5.
Define Sequences Menu	Refer to section 3.5.7.
Points/Seq Log	Records all the events relating to points and sequences.

3.5.5 Define Points Menu

Main Menu → Points & Sequencing Menu → Define Points Menu

Edit Point	This is a quick method for the user to access the point definition they wish to edit.
Reset All Points	This will erase all the current point definitions stored in the USB memory stick.
Point 132	Select a point to edit (from 1-32), this leads the user to the Define Point Menu submenu. Note that the point definitions are not stored in the instrument's EEPROM. Instead, they are stored on the USB flash drive in a file named "POINT.TXT".

3.5.6 Define Point Menu

Main Menu → Points & Sequencing Menu → Define Points Menu → Define Point Menu

Name	Enter a name for the point (limited to 6 letters or numbers).
Copy from	Copy the definition of another point into this one. Useful for making a series of points that only differ in one or two small ways.
Operation	The type of operation for this point. Please refer Section 3.5.6.1 through to Section 3.5.6.3 for details of each operation.
[Various]	Various fields will be displayed based on the type of operation selected.
Input Mask	When the digital input lines match this pattern, the point will automatically trigger. An X means the pattern will trigger regardless of the state of that line. If the pattern is set to all XXXXXXXX, it will never be triggered by the digital input lines. Conversely, if it is set to XXXXXXXX1, the point will automatically be triggered as soon as the instrument turns on, as the default state of the digital input lines is 11111111. Remember that selecting manual operation, or manually starting a point or sequence, will temporarily disable the digital input controls. Digital inputs will be ignored while the system is in warmup
Output Mask	The digital output lines will be a combination (OR operation) of this pattern, the sequence DIO output mask (if running a sequence) and the DIO Output Mask (refer to the Digital Output Menu , Section 3.5.39). An X will have no impact on the combination (i.e. any bits marked X here will either be set by the sequence or the DIO Output Mask).

3.5.6.1 Zero Point

Run a zero point.

Flow	Desired flow delivered to the output port.
	If the Set Point you selected is incompatible with this flow, you will be asked if you want to change the Set Point.
Diluent	The diluent to be used; selected from the diluents attached to the instrument if you have the dual diluent option.

3.5.6.2 O3 Generator

Generate and dilute ozone.

Flow	Desired flow delivered to the output port. If the Set Point you selected is incompatible with this flow, you will be asked if you want to change the Set Point.
Diluent	The diluent to be used; selected from the diluents attached to the instrument if you have the dual diluent option.
Ozone	Gas name
Zero Point	When this option is ON, the set point is fixed to 0.0 and the ozone lamp is turned off. This is necessary when calibrating the photometer.

Units	Units for the desired concentration. These are the units that all the gasses will be displayed in, on the Home Screen .
Set Point	The desired concentration of ozone. Note that the amount of ozone that can be delivered depends on the flow.

3.5.6.3 O3 Gen/Photometer

Generate and dilute ozone under photometer control. The amount of ozone delivered will be constantly monitored and adjusted by a feedback loop, to remain at the desired concentration.

Flow	Desired flow delivered to the output port. If the Set Point you selected is incompatible with this flow, you will be asked if you want to change the Set Point.
Diluent	The diluent to be used; selected from the diluents attached to the instrument if you have the dual diluent option.
Ozone	Gas name
Zero Point	When this option is ON, the set point is fixed to 0.0 and the ozone lamp is turned off. This is necessary when calibrating the photometer.
Units	Units for the desired concentration. These are the units that all the gasses will be displayed in, on the Home Screen .
Set Point	The desired concentration of ozone. Note that the amount of ozone that can be delivered depends on the flow.

3.5.7 Define Sequences Menu

Main Menu → Points & Sequencing Menu → Define Sequences Menu

Edit Sequence	This is a quick method for the user to access the sequence definition they wish to edit.
Reset all Sequences	This will erase all the current sequence definitions stored in the USB memory stick.
Sequence 1-16	Select a sequence to edit (from 1-16). Note that the sequence definitions are not stored in the instrument's EEPROM. Instead, they are stored on the USB flash drive in a file named "SEQUENCE.TXT".

3.5.8 Define Sequence Menu

Main Menu → Points & Sequencing Menu → Define Sequences Menu → Define Sequence Menu

Name	Enter a name for the sequence (limited to 6 letters or numbers).
Copy from	Copy the definition of another sequence into this one.
Timed Start	When Timed Start is turned on it allows the user to define a time and date for the sequence to start running. The only other condition is that the instrument must be in "Idle" mode, while in any other mode the Timed Start will be ignored.
Date [Timed Start On]	Displays the date that the sequence is due to run.

Time [Timed Start On]	Edit and display the time that the sequence will run. The time is set using a 24 hour clock.
Repeat [Timed Start On]	Defines an interval value for the repeat of the sequence based on the Units selected. This field indicates the delay period; once the specified amount of time has lapsed the sequence will automatically run again. The user can edit this field but some restrictions apply depending on the Units selected. Default is "1".
Units [Timed Start On]	This is where the user can define the type of units for the Repeat delay period. For example: A Repeat of "1" and Units of "Days" means that the sequence will automatically run every day at the defined time. Default is "Days"
Step 1-16	Define the task to perform at this point in the sequence. IDLE: The sequence is terminated and the instrument goes to the IDLE state. REPEAT: Go back to the beginning of the sequence and start over. POINT: Load a point for a specified amount of time. SEQUENCE: Load a sequence and repeat it a specified number of times. Note that you may only nest sequences three deep; that is, Seq A can call Seq B, which can call Seq C. If you attempt to have Seq C call another sequence, the entire sequence will terminate with an error. You may call sequences in order as many times as you like: so Seq A can call Seq B, C, D, and E one after the other.
Time [Point]	Run the named point for this many minutes. At the end of that time the sequence advances to the next task.
Repeats [Sequence]	Repeat the named sequence this many times. At the end of that loop the sequence advances to the next step.
Input Mask	When the digital input lines match this pattern, the sequence will automatically trigger. An X means the pattern will trigger regardless of the state of that line. If the pattern is set to all XXXXXXXXX, it will never be triggered by the digital input lines. Conversely, if it is set to XXXXXXXX1, the sequence will automatically be triggered as soon as the instrument turns on, as the default state of the digital input lines is 11111111. Remember that selecting manual operation, or manually starting a point or sequence, will temporarily disable the digital input controls.
Output Mask	The digital output lines will be a combination (OR operation) of this pattern, the point DIO output mask (if running a sequence) and the DIO Output Mask (refer to Digital Output Menu , Section 3.5.39). An X will have no impact on the combination (i.e. any bits marked X here will either be set by the point or the DIO Output Mask).

3.5.9 Manual Operation Menu

Main Menu \rightarrow Manual Operation Menu

Manual Timeout	When using the manual point menu to operate the instrument, the instrument will automatically return to the "Idle" state after this timeout has expired. If the Manual Timeout is set to 0, then no timeout is used. The instrument will remain in the manually selected state indefinitely.
Manual Point Menu	Refer to Section 3.5.10.
Manual Flow Menu	Refer to Section 3.5.11.

3.5.10 Manual Point Menu

Main Menu → Manual Operation Menu → Manual Point Menu

This menu allows the user to operate the instrument directly (without defining a point). This may be used when experimenting with points it can then later be copied into a permanent point definition with the "Copy from..." feature.

Mode	This is the same as the Mode in the Quick Menu.
Operation	The type of operation. Refer to Sections 3.5.6.1 and 3.5.6.3 for operation descriptions.
[Various]	Various fields will be displayed based on the type of operation selected.
Output Mask	The digital output lines will be a combination (OR operation) of this pattern, the sequence DIO output mask (if running a sequence) and the DIO Output Mask (refer to the Digital Output Menu, Section 3.5.39). An X will have no impact on the combination (i.e. any bits marked X here will either be set by the sequence or the DIO Output Mask).
Audit Mode [Operation O3 Gen/Photometer]	Provides a method for external audits of the photometer. When turned on, a warning dialog box appears, stating "Connect external ozone generator". The point is then forced into a Zero point (if it isn't already). While running this point, the MFCs are locked closed and their flow alarms are supressed. The new status condition "Audit Mode" will be triggered, forcing a yellow warning light. Otherwise the point runs as normal. Refer to Section 5.6.

3.5.11 Manual Flow Menu

Main Menu → Manual Operation Menu → Manual Flow Menu

For calibration and test it is often necessary to directly control the MFC flows.

Gas	Indicate which gas is being provided. This is used to calculate the MFC correction factor.
MFC Diluent	Enter the desired flow for the diluent MFC (in sccm).
Flow	Displays the measured flow for the above MFC.

3.5.12 Analyser State Menu

Main Menu → Analyser State Menu

This displays the status of various parameters that affect instrument measurements.

Status Menu	Refer to Section 3.5.13.
Temperature Menu	Refer to Section 3.5.14.
Pressure & Flow Menu	Refer to Section 3.5.15.
Voltage Menu	Refer to Section 3.5.16.
Model	This field displays the model type selected.
Nominal Range	This is the nominal range of the photometer.
Ecotech ID	The Ecotech ID number.
Serial No.	The main controller PCA serial number.
Board Revision	The main controller PCA version.
Firmware Ver.	This field displays the firmware version currently in use on this instrument. This can be important when performing diagnostics and reporting back to the manufacturer.
Power Failure	This field displays the time and date of the last power failure or when power was disconnected from the instrument.

3.5.13 Status Menu

Main Menu → Analyser State Menu → Status Menu

The Status Menu presents a list of the current Pass/Fail statuses of the main components. During warm-up, the status of some parameters will be a dashed line.

Event Log	This field enters a screen with a log of all the events that the instrument has performed. These events include errors and warnings. This log is stored on the USB memory stick. The log is organised by month. When you enter this screen you will be prompted to enter the month for which you wish to view events.
Show Error List	This field allows the user to display the list of current errors and warnings on the screen.
Next Service Due	This field is visible with the next service due date if the service is due within the next two weeks.
Maintenance Mode	Ok if the instrument is online and Error if the instrument is in maintenance mode. Refer to Service Menu (refer to Section 3.5.24) or Quick Menu (refer to Section 3.5.1).
+5V Supply	Pass if the +5 V power supply to the main board is within the acceptable range.
+12V Supply	Pass if the +12 V power supply is within the acceptable range.
+ Analog Supply	Pass if the analogue power supply is within the acceptable range (+12 V).
- Analog Supply	Pass if the analogue power supply is within the acceptable range (-12 $\!$ V).
A2D	Fail only if a problem is detected with the analog to digital conversion.
Ozone Lamp Temp.	Pass if the ozone generator lamp is the correct temperature.

Checks if the photometer lamp current is within acceptable limits 8-12 mA. Ref Voltage Checks that the reference voltage is within acceptable limits 1.5 to 4.5 V. System Power Pass if the system has an adequate electrical supply. Diagnostic Mode Error if the electronics are in diagnostic mode. Refer to Digital Pots Menu, Section 3.5.26. Diagnostic PTF Comp Error if the pressure / temperature compensation is disabled. Refer to Diagnostics Menu, Section 3.5.25). Diagnostic Control Error if the control loop is disabled. Refer to Diagnostics Menu, Section 3.5.25). Valve Manual Control Error if the valves have been placed in manual control mode. Refer to Valve Menu, Section 3.5.25). Coston Conce V Saturated Indicates if the voltage of the concentration during photometer measurement is within the limits of the analog to digital converter (-0.26 to 3.29 V). Bikgnd Conce V Saturated Indicates if the voltage of the concentration during photometer background measurement is within the limits of the analog to digital converter (-0.26 to 3.29 V). Diagnostic Conce Gen. Cal Fail if the instrument is performing an Os generator calibration. Refer to Ozone Calibration Menu, Section 3.5.21). Pressure Calibration Error if the user is performing a pressure calibration. Photometer Flow Fault Pass when the photometer has sufficient flow. Error if the instrument is under manual flow control (Refer to Manual Flow Error if the instrument is under manual flow control (Refer to Manual Flow Menu, Section 3.5.11. Diluent Flow Fault Pass when the diluent flow is within 5 % of specified flow. Pass when the ozone generator flow is within 10 % of 100 sccm. Pass if the chassis temperature is within 10 % of the heater set point (to keep a constant accurate flow). Chassis Temp. Pass if the chassis temperature is within the acceptable limits (0-50 °C). USB Stick Disconnect Detects whether a USB memory stick is plugged into the front USB port. Instrument Warmup Ok once the photometer is out of warm-up status.		
Ref Voltage Checks that the reference voltage is within acceptable limits 1.5 to 4.5 V. System Power Pass if the system has an adequate electrical supply. Diagnostic Mode Error if the electronics are in diagnostic mode. Refer to Digital Pots Menu, Section 3.5.26. Diagnostic PTF Comp Error if the pressure /temperature compensation is disabled. Refer to Diagnostics Menu, Section 3.5.25). Diagnostic Control Error if the control loop is disabled. Refer to Diagnostics Menu, Section 3.5.25). Valve Manual Control Error if the valves have been placed in manual control mode. Refer to Valve Menu, Section 3.5.29). O3 Gen. Manual Control Error if the valves have been placed in manual control. Refer to Digital Pots Menu, Section 3.5.29. O3 Conc V Saturated Indicates if the voltage of the concentration during photometer measurement is within the limits of the analog to digital converter (-0.26 to 3.29 V). Bkgnd Conc V Saturated Indicates if the voltage of the concentration during photometer background measurement is within the limits of the analog to digital converter (-0.26 to 3.29 V). Ozone Gen. Cal Fail if the instrument is performing an O3 generator calibration. Refer to Ozone Calibration Menu, Section 3.5.21). Pressure Calibration Error if the user is performing a pressure calibration. Photometer Flow Fault Pass when the photometer has sufficient flow. Full Stop Error if the instrument is under manual flow control (Refer to Manual Flow Menu, Section 3.5.11. Diluent Flow Fault Pass when the diluent flow is within 5 % of specified flow. Ozone Flow Fault Pass when the ozone generator flow is within 10 % of 100 sccm. Pass if the flow block temperature is within 10 % of 100 sccm. Pass if the Chassis temperature is within the acceptable limits (0-50 °C). USB Stick Disconnect Detects whether a USB memory stick is plugged into the front USB port. Instrument Warmup Ok once the photometer is out of warm-up status.	Lamp Temp.	Pass if the photometer lamp is the correct temperature.
4,5 V. System Power Pass if the system has an adequate electrical supply. Diagnostic Mode Error if the electronics are in diagnostic mode. Refer to Digital Pots Menu, Section 3.5.26. Diagnostic PTF Comp Error if the pressure /temperature compensation is disabled. Refer to Diagnostics Menu, Section 3.5.25). Diagnostic Control Error if the control loop is disabled. Refer to Diagnostics Menu, Section 3.5.25). Valve Manual Control Error if the valves have been placed in manual control mode. Refer to Valve Menu, Section 3.5.29). Error if the ozone generator is under manual control. Refer to Digital Pots Menu, Section 3.5.26. O3 Conc V Saturated Indicates if the voltage of the concentration during photometer measurement is within the limits of the analog to digital converter (-0.26 to 3.29 V). Bkgnd Conc V Saturated Indicates if the voltage of the concentration during photometer background measurement is within the limits of the analog to digital converter (-0.26 to 3.29 V). Ozone Gen. Cal Fail if the instrument is performing an O3 generator calibration. Refer to Ozone Calibration Menu, Section 3.5.21). Pressure Calibration Error if the user is performing a pressure calibration. Flow Calibration Error if the user is performing a pressure calibration. Photometer Flow Fault Pass when the photometer has sufficient flow. Error if the instrument is under manual flow control (Refer to Manual Flow Manual Flow Error if the instrument is under manual flow control (Refer to Manual Flow Menu, Section 3.5.11. Diluent Flow Fault Pass when the diluent flow is within 10 % of 100 sccm. Plow Block Temp. Pass if the flow block temperature is within 10 % of 100 sccm. Plow Block Temp. Pass if the chassis temperature is within the acceptable limits (0-50 °C). USB Stick Disconnect Detects whether a USB memory stick is plugged into the front USB port. Instrument Warmup Ok once the photometer is out of warm-up status.	Lamp/Source	
Diagnostic Mode Error if the electronics are in diagnostic mode. Refer to Digital Pots Menu, Section 3.5.26. Diagnostic PTF Comp Error if the pressure / temperature compensation is disabled. Refer to Diagnostics Menu, Section 3.5.25). Diagnostic Control Error if the control loop is disabled. Refer to Diagnostics Menu, Section 3.5.25). Perror if the valves have been placed in manual control mode. Refer to Valve Menu, Section 3.5.29). O3 Gen. Manual Control Error if the ozone generator is under manual control. Refer to Digital Pots Menu, Section 3.5.26. O3 Conc V Saturated Indicates if the voltage of the concentration during photometer measurement is within the limits of the analog to digital converter (-0.26 to 3.29 V). Bkgnd Conc V Saturated Indicates if the voltage of the concentration during photometer background measurement is within the limits of the analog to digital converter (-0.26 to 3.29 V). Ozone Gen. Cal Fail if the instrument is performing an O3 generator calibration. Refer to Ozone Calibration Menu, Section 3.5.21). Pressure Calibration Error if the user is performing a pressure calibration. Flow Calibration Error if the user is performing a flow calibration. Photometer Flow Fault Pass when the photometer has sufficient flow. Error if the instrument is under manual flow control (Refer to Manual Flow Menu, Section 3.5.11. Diluent Flow Fault Pass when the diluent flow is within 5 % of specified flow. Ozone Flow Fault Pass when the ozone generator flow is within 10 % of 100 sccm. Flow Block Temp. Pass if the flow block temperature is within 10 % of the heater set point (to keep a constant accurate flow). Chassis Temp. Ok once the photometer is out of warm-up status. O3 Gen. Flow Fault Fail if the O3 Gen. Warm feature is enabled but there is insufficient flow through the ozone generating chamber (< 70 sccm).	Ref Voltage	
Menu, Section 3.5.26. Diagnostic PTF Comp Error if the pressure / temperature compensation is disabled. Refer to Diagnostics Menu, Section 3.5.25). Diagnostic Control Error if the control loop is disabled. Refer to Diagnostics Menu, Section 3.5.25). Valve Manual Control Error if the valves have been placed in manual control mode. Refer to Valve Menu, Section 3.5.29). O3 Gen. Manual Control Error if the ozone generator is under manual control. Refer to Digital Pots Menu, Section 3.5.26. O3 Conc V Saturated Indicates if the voltage of the concentration during photometer measurement is within the limits of the analog to digital converter (-0.26 to 3.29 V). Blkgnd Conc V Saturated Indicates if the voltage of the concentration during photometer background measurement is within the limits of the analog to digital converter (-0.26 to 3.29 V). Ozone Gen. Cal Fail if the instrument is performing an O3 generator calibration. Refer to Ozone Calibration Menu, Section 3.5.21). Pressure Calibration Error if the user is performing a pressure calibration. Flow Calibration Error if the user is performing a flow calibration. Photometer Flow Fault Pass when the photometer has sufficient flow. Full Stop Error if the instrument is in STOP mode. Manual Flow Error if the instrument is under manual flow control (Refer to Manual Flow Menu, Section 3.5.11. Diluent Flow Fault Pass when the diluent flow is within 5 % of specified flow. Ozone Flow Fault Pass when the ozone generator flow is within 10 % of 100 sccm. Flow Block Temp. Pass if the flow block temperature is within 10 % of the heater set point (to keep a constant accurate flow). Chassis Temp. Observe Whether a USB memory stick is plugged into the front USB port. USB Stick Disconnect Detects whether a USB memory stick is plugged into the front USB port. Instrument Warmup Ok once the photometer is out of warm-up status.	System Power	Pass if the system has an adequate electrical supply.
to Diagnostics Menu, Section 3.5.25). Diagnostic Control Error if the control loop is disabled. Refer to Diagnostics Menu, Section 3.5.25). Valve Manual Control Error if the valves have been placed in manual control mode. Refer to Valve Menu, Section 3.5.29). O3 Gen. Manual Control Error if the ozone generator is under manual control. Refer to Digital Pots Menu, Section 3.5.26. O3 Conc V Saturated Indicates if the voltage of the concentration during photometer measurement is within the limits of the analog to digital converter (-0.26 to 3.29 V). Bkgnd Conc V Saturated Indicates if the voltage of the concentration during photometer background measurement is within the limits of the analog to digital converter (-0.26 to 3.29 V). Ozone Gen. Cal Fail if the instrument is performing an O₃ generator calibration. Refer to Ozone Calibration Menu, Section 3.5.21). Pressure Calibration Error if the user is performing a pressure calibration. Flow Calibration Error if the user is performing a flow calibration. Photometer Flow Fault Pass when the photometer has sufficient flow. Full Stop Error if the instrument is in STOP mode. Manual Flow Error if the instrument is under manual flow control (Refer to Manual Flow Menu, Section 3.5.11. Diluent Flow Fault Pass when the diluent flow is within 5 % of specified flow. Ozone Flow Fault Pass when the diluent flow is within 10 % of 100 sccm. Flow Block Temp. Pass if the flow block temperature is within 10 % of the heater set point (to keep a constant accurate flow). Chassis Temp. Pass if the chassis temperature is within the acceptable limits (0.50 °C). USB Stick Disconnect Detects whether a USB memory stick is plugged into the front USB port. Instrument Warmup Ok once the photometer is out of warm-up status.	Diagnostic Mode	
Section 3.5.25). Valve Manual Control Error if the valves have been placed in manual control mode. Refer to Valve Menu, Section 3.5.29). O3 Gen. Manual Control Error if the ozone generator is under manual control. Refer to Digital Pots Menu, Section 3.5.26. O3 Conc V Saturated Indicates if the voltage of the concentration during photometer measurement is within the limits of the analog to digital converter (-0.26 to 3.29 V). Bkgnd Conc V Saturated Indicates if the voltage of the concentration during photometer background measurement is within the limits of the analog to digital converter (-0.26 to 3.29 V). Ozone Gen. Cal Fail if the instrument is performing an O₃ generator calibration. Refer to Ozone Calibration Menu, Section 3.5.21). Pressure Calibration Error if the user is performing a pressure calibration. Flow Calibration Error if the user is performing a flow calibration. Photometer Flow Fault Pass when the photometer has sufficient flow. Full Stop Error if the instrument is in STOP mode. Manual Flow Error if the instrument is under manual flow control (Refer to Manual Flow Menu, Section 3.5.11. Diluent Flow Fault Pass when the diluent flow is within 5 % of specified flow. Ozone Flow Fault Pass when the ozone generator flow is within 10 % of 100 sccm. Flow Block Temp. Pass if the flow block temperature is within 10 % of the heater set point (to keep a constant accurate flow). Chassis Temp. Pass if the chassis temperature is within the acceptable limits (0-50 °C). USB Stick Disconnect Detects whether a USB memory stick is plugged into the front USB port. Instrument Warmup Ok once the photometer is out of warm-up status.	Diagnostic PTF Comp	
to Valve Menu, Section 3.5.29). Brror if the ozone generator is under manual control. Refer to Digital Pots Menu, Section 3.5.26. Indicates if the voltage of the concentration during photometer measurement is within the limits of the analog to digital converter (-0.26 to 3.29 V). Bkgnd Conc V Saturated Indicates if the voltage of the concentration during photometer background measurement is within the limits of the analog to digital converter (-0.26 to 3.29 V). Ozone Gen. Cal Fail if the instrument is performing an O3 generator calibration. Refer to Ozone Calibration Menu, Section 3.5.21). Pressure Calibration Error if the user is performing a pressure calibration. Flow Calibration Error if the user is performing a flow calibration. Photometer Flow Fault Pass when the photometer has sufficient flow. Full Stop Error if the instrument is in STOP mode. Manual Flow Error if the instrument is under manual flow control (Refer to Manual Flow Menu, Section 3.5.11. Diluent Flow Fault Pass when the diluent flow is within 5 % of specified flow. Ozone Flow Fault Pass when the diluent flow is within 10 % of 100 sccm. Flow Block Temp. Pass if the flow block temperature is within 10 % of the heater set point (to keep a constant accurate flow). Chassis Temp. Pass if the chassis temperature is within the acceptable limits (0-50 °C). USB Stick Disconnect Detects whether a USB memory stick is plugged into the front USB port. Instrument Warmup Ok once the photometer is out of warm-up status. O3 Gen. Flow Fault Fail if the O3 Gen. Warm feature is enabled but there is insufficient flow through the ozone generating chamber (< 70 sccm).	Diagnostic Control	
Digital Pots Menu, Section 3.5.26. O3 Conc V Saturated Indicates if the voltage of the concentration during photometer measurement is within the limits of the analog to digital converter (-0.26 to 3.29 V). Bkgnd Conc V Saturated Indicates if the voltage of the concentration during photometer background measurement is within the limits of the analog to digital converter (-0.26 to 3.29 V). Ozone Gen. Cal Fail if the instrument is performing an O3 generator calibration. Refer to Ozone Calibration Menu, Section 3.5.21). Pressure Calibration Error if the user is performing a pressure calibration. Flow Calibration Error if the user is performing a flow calibration. Photometer Flow Fault Pass when the photometer has sufficient flow. Full Stop Error if the instrument is in STOP mode. Manual Flow Error if the instrument is under manual flow control (Refer to Manual Flow Menu, Section 3.5.11. Diluent Flow Fault Pass when the diluent flow is within 5 % of specified flow. Ozone Flow Fault Pass when the ozone generator flow is within 10 % of 100 sccm. Flow Block Temp. Pass if the flow block temperature is within 10 % of the heater set point (to keep a constant accurate flow). Chassis Temp. Pass if the chassis temperature is within the acceptable limits (0-50 °C). USB Stick Disconnect Detects whether a USB memory stick is plugged into the front USB port. Instrument Warmup Ok once the photometer is out of warm-up status. O3 Gen. Flow Fault Fail if the O3 Gen. Warm feature is enabled but there is insufficient flow through the ozone generating chamber (< 70 sccm).	Valve Manual Control	
measurement is within the limits of the analog to digital converter (-0.26 to 3.29 V). Bkgnd Conc V Saturated Indicates if the voltage of the concentration during photometer background measurement is within the limits of the analog to digital converter (-0.26 to 3.29 V). Ozone Gen. Cal Fail if the instrument is performing an O ₃ generator calibration. Refer to Ozone Calibration Menu, Section 3.5.21). Pressure Calibration Error if the user is performing a pressure calibration. Flow Calibration Error if the user is performing a flow calibration. Photometer Flow Fault Pass when the photometer has sufficient flow. Full Stop Error if the instrument is in STOP mode. Manual Flow Error if the instrument is under manual flow control (Refer to Manual Flow Menu, Section 3.5.11. Diluent Flow Fault Pass when the diluent flow is within 5 % of specified flow. Ozone Flow Fault Pass when the ozone generator flow is within 10 % of 100 sccm. Flow Block Temp. Pass if the flow block temperature is within 10 % of the heater set point (to keep a constant accurate flow). Chassis Temp. Pass if the chassis temperature is within the acceptable limits (0-50 °C). USB Stick Disconnect Detects whether a USB memory stick is plugged into the front USB port. Instrument Warmup Ok once the photometer is out of warm-up status. O3 Gen. Flow Fault Fail if the O3 Gen. Warm feature is enabled but there is insufficient flow through the ozone generating chamber (< 70 sccm).	O3 Gen. Manual Control	
background measurement is within the limits of the analog to digital converter (-0.26 to 3.29 V). Ozone Gen. Cal Fail if the instrument is performing an O3 generator calibration. Refer to Ozone Calibration Menu, Section 3.5.21). Pressure Calibration Error if the user is performing a pressure calibration. Flow Calibration Error if the user is performing a flow calibration. Photometer Flow Fault Pass when the photometer has sufficient flow. Full Stop Error if the instrument is in STOP mode. Manual Flow Error if the instrument is under manual flow control (Refer to Manual Flow Menu, Section 3.5.11. Diluent Flow Fault Pass when the diluent flow is within 5 % of specified flow. Ozone Flow Fault Pass when the ozone generator flow is within 10 % of 100 sccm. Flow Block Temp. Pass if the flow block temperature is within 10 % of the heater set point (to keep a constant accurate flow). Chassis Temp. Pass if the chassis temperature is within the acceptable limits (0-50 °C). USB Stick Disconnect Detects whether a USB memory stick is plugged into the front USB port. Instrument Warmup Ok once the photometer is out of warm-up status. O3 Gen. Flow Fault Fail if the O3 Gen. Warm feature is enabled but there is insufficient flow through the ozone generating chamber (< 70 sccm).	O3 Conc V Saturated	measurement is within the limits of the analog to digital converter
Refer to Ozone Calibration Menu, Section 3.5.21). Pressure Calibration Error if the user is performing a pressure calibration. Flow Calibration Error if the user is performing a flow calibration. Photometer Flow Fault Pass when the photometer has sufficient flow. Full Stop Error if the instrument is in STOP mode. Manual Flow Error if the instrument is under manual flow control (Refer to Manual Flow Menu, Section 3.5.11. Diluent Flow Fault Pass when the diluent flow is within 5 % of specified flow. Ozone Flow Fault Pass when the ozone generator flow is within 10 % of 100 sccm. Flow Block Temp. Pass if the flow block temperature is within 10 % of the heater set point (to keep a constant accurate flow). Chassis Temp. Pass if the chassis temperature is within the acceptable limits (0-50 °C). USB Stick Disconnect Detects whether a USB memory stick is plugged into the front USB port. Instrument Warmup Ok once the photometer is out of warm-up status. O3 Gen. Flow Fault Fail if the O3 Gen. Warm feature is enabled but there is insufficient flow through the ozone generating chamber (< 70 sccm).	Bkgnd Conc V Saturated	background measurement is within the limits of the analog to
Flow Calibration Error if the user is performing a flow calibration. Photometer Flow Fault Pass when the photometer has sufficient flow. Error if the instrument is in STOP mode. Manual Flow Error if the instrument is under manual flow control (Refer to Manual Flow Menu, Section 3.5.11. Diluent Flow Fault Pass when the diluent flow is within 5 % of specified flow. Ozone Flow Fault Pass when the ozone generator flow is within 10 % of 100 sccm. Flow Block Temp. Pass if the flow block temperature is within 10 % of the heater set point (to keep a constant accurate flow). Chassis Temp. Pass if the chassis temperature is within the acceptable limits (0-50 °C). USB Stick Disconnect Detects whether a USB memory stick is plugged into the front USB port. Instrument Warmup Ok once the photometer is out of warm-up status. O3 Gen. Flow Fault Fail if the O3 Gen. Warm feature is enabled but there is insufficient flow through the ozone generating chamber (< 70 sccm).	Ozone Gen. Cal	
Photometer Flow Fault Full Stop Error if the instrument is in STOP mode. Manual Flow Error if the instrument is under manual flow control (Refer to Manual Flow Menu, Section 3.5.11. Diluent Flow Fault Pass when the diluent flow is within 5 % of specified flow. Ozone Flow Fault Pass when the ozone generator flow is within 10 % of 100 sccm. Flow Block Temp. Pass if the flow block temperature is within 10 % of the heater set point (to keep a constant accurate flow). Chassis Temp. Pass if the chassis temperature is within the acceptable limits (0-50 °C). USB Stick Disconnect Detects whether a USB memory stick is plugged into the front USB port. Instrument Warmup Ok once the photometer is out of warm-up status. O3 Gen. Flow Fault Fail if the O3 Gen. Warm feature is enabled but there is insufficient flow through the ozone generating chamber (< 70 sccm).	Pressure Calibration	Error if the user is performing a pressure calibration.
Full Stop Error if the instrument is in STOP mode. Manual Flow Error if the instrument is under manual flow control (Refer to Manual Flow Menu, Section 3.5.11. Diluent Flow Fault Pass when the diluent flow is within 5 % of specified flow. Ozone Flow Fault Pass when the ozone generator flow is within 10 % of 100 sccm. Flow Block Temp. Pass if the flow block temperature is within 10 % of the heater set point (to keep a constant accurate flow). Chassis Temp. Pass if the chassis temperature is within the acceptable limits (0-50 °C). USB Stick Disconnect Detects whether a USB memory stick is plugged into the front USB port. Instrument Warmup Ok once the photometer is out of warm-up status. O3 Gen. Flow Fault Fail if the O3 Gen. Warm feature is enabled but there is insufficient flow through the ozone generating chamber (< 70 sccm).	Flow Calibration	Error if the user is performing a flow calibration.
Manual Flow Error if the instrument is under manual flow control (Refer to Manual Flow Menu, Section 3.5.11. Diluent Flow Fault Pass when the diluent flow is within 5 % of specified flow. Ozone Flow Fault Pass when the ozone generator flow is within 10 % of 100 sccm. Flow Block Temp. Pass if the flow block temperature is within 10 % of the heater set point (to keep a constant accurate flow). Chassis Temp. Pass if the chassis temperature is within the acceptable limits (0-50 °C). USB Stick Disconnect Detects whether a USB memory stick is plugged into the front USB port. Instrument Warmup Ok once the photometer is out of warm-up status. O3 Gen. Flow Fault Fail if the O3 Gen. Warm feature is enabled but there is insufficient flow through the ozone generating chamber (< 70 sccm).	Photometer Flow Fault	Pass when the photometer has sufficient flow.
Manual Flow Menu, Section 3.5.11. Diluent Flow Fault Pass when the diluent flow is within 5 % of specified flow. Ozone Flow Fault Pass when the ozone generator flow is within 10 % of 100 sccm. Flow Block Temp. Pass if the flow block temperature is within 10 % of the heater set point (to keep a constant accurate flow). Chassis Temp. Pass if the chassis temperature is within the acceptable limits (0-50 °C). USB Stick Disconnect Detects whether a USB memory stick is plugged into the front USB port. Instrument Warmup Ok once the photometer is out of warm-up status. O3 Gen. Flow Fault Fail if the O3 Gen. Warm feature is enabled but there is insufficient flow through the ozone generating chamber (< 70 sccm).	Full Stop	Error if the instrument is in STOP mode.
Ozone Flow Fault Pass when the ozone generator flow is within 10 % of 100 sccm. Flow Block Temp. Pass if the flow block temperature is within 10 % of the heater set point (to keep a constant accurate flow). Chassis Temp. Pass if the chassis temperature is within the acceptable limits (0-50 °C). USB Stick Disconnect Detects whether a USB memory stick is plugged into the front USB port. Instrument Warmup Ok once the photometer is out of warm-up status. Pail if the O3 Gen. Warm feature is enabled but there is insufficient flow through the ozone generating chamber (< 70 sccm).	Manual Flow	·
Pass if the flow block temperature is within 10 % of the heater set point (to keep a constant accurate flow). Chassis Temp. Pass if the chassis temperature is within the acceptable limits (0-50 °C). USB Stick Disconnect Detects whether a USB memory stick is plugged into the front USB port. Instrument Warmup Ok once the photometer is out of warm-up status. O3 Gen. Flow Fault Fail if the O3 Gen. Warm feature is enabled but there is insufficient flow through the ozone generating chamber (< 70 sccm).	Diluent Flow Fault	Pass when the diluent flow is within 5 % of specified flow.
point (to keep a constant accurate flow). Chassis Temp. Pass if the chassis temperature is within the acceptable limits (0-50 °C). USB Stick Disconnect Detects whether a USB memory stick is plugged into the front USB port. Instrument Warmup Ok once the photometer is out of warm-up status. Fail if the O3 Gen. Warm feature is enabled but there is insufficient flow through the ozone generating chamber (< 70 sccm).	Ozone Flow Fault	Pass when the ozone generator flow is within 10 % of 100 sccm.
(0-50 °C). USB Stick Disconnect Detects whether a USB memory stick is plugged into the front USB port. Instrument Warmup Ok once the photometer is out of warm-up status. Fail if the O3 Gen. Warm feature is enabled but there is insufficient flow through the ozone generating chamber (< 70 sccm).	Flow Block Temp.	·
port. Instrument Warmup Ok once the photometer is out of warm-up status. Fail if the O3 Gen. Warm feature is enabled but there is insufficient flow through the ozone generating chamber (< 70 sccm).	Chassis Temp.	
O3 Gen. Flow Fault Fail if the O3 Gen. Warm feature is enabled but there is insufficient flow through the ozone generating chamber (< 70 sccm).	USB Stick Disconnect	
flow through the ozone generating chamber (< 70 sccm).	Instrument Warmup	Ok once the photometer is out of warm-up status.
	O3 Gen. Flow Fault	Fail if the O3 Gen. Warm feature is enabled but there is insufficient flow through the ozone generating chamber (< 70 sccm).
Audit Mode Error if a manual O3 Gen/Photometer point is in audit mode.	Audit Mode	Error if a manual O3 Gen/Photometer point is in audit mode.

3.5.14 Temperature Menu

Main Menu → Analyser State Menu → Temperature Menu

Temperature Units	The current temperature units of the analyser (Celsius, Fahrenheit, or Kelvin).
Set Point (LAMP)	The temperature set point of the photometer UV lamp. The factory default is 50 °C.
Set Point (FLOW)	The temperature set point of the flow block heater. The factory default is 50 $^{\circ}$ C.
Set Point (O3 GEN.)	The temperature set point of the ozone generating lamp. The factory default is 50 $^{\circ}$ C.
Lamp	The current temperature of the photometer lamp.
Sample	The current sample temperature of the shielded photometer.
Flow Block	The current temperature of the flow block.
Chassis	The current temperature of air inside the chassis, measured on the main controller PCA.
O3 Gen.	The current temperature of the ozone generator.

3.5.15 Pressure & Flow Menu

Main Menu → Analyser State Menu → Pressure & Flow Menu

Pressure Units	Select the units that the pressure will be displayed in (torr, PSI, mBar, ATM, kPa).
Ambient	Current ambient pressure.
Cell	Current photometer cell pressure.
Internal Pump	Current photometer pumps pressure.
Flow Units	Select the units that the flow will be displayed in (slpm or L/min).
Photometer	The current photometer flow.
Diluent	The gas flow through the diluent MFC.
Ozone	The current ozone flow.

3.5.16 Voltage Menu

Main Menu → Analyser State Menu → Voltage Menu

Lamp Current	The photometer UV lamp current.
Conc Voltage (RAW)	Voltage from the sensor proportional to the detected signal from the cell. This voltage represents the actual measurement of gas.
Conc Voltage	Displays the detector voltage after PGA scaling.
Ref. Voltage	A voltage offset from the detector that is removed to measure the concentration voltage. This is set to 3 V (using the input pot) at start-up, and automatically adjusts if the reference voltage drops below 2 V or above 4 V.

O3 Gen. Current	Ozone generator current.
+5V Supply	+5 V power supply.
+12V Supply	+12 V power supply.
+Analog Supply	+12 V (primary) power supply. The value should be within ±2 V.
-Analog Supply	-12 V (primary) power supply. The value should be within ± 2 V.

3.5.17 General Settings Menu

$\mathbf{Main\ Menu \to General\ Settings\ Menu}$

Internal Diluent	When Disabled valve five is switched to change the source of zero air (diluent) to an external source (Ext Zero Port). When Enabled the zero air (diluent) is sourced Internally.
Decimal Places	Select the number of decimal places (0-5) used for the concentration displayed on the home screen.
Reference Temperature	The standard temperature used when calculating slpm flow from the MFC.
Temperature Units	Select the units that temperature will be displayed in °C (Celsius), °F (Fahrenheit), or K (Kelvin).
Pressure Units	Select the units that the pressure will be displayed in (torr, PSI, mBar, ATM and kPa).
Flow Units	Select the units that the sample flow will be displayed in (slpm or L/min).
Date	The current instrument date.
Time	The current instrument time.
Backlight	Select the length of time the screen and keypad backlight remain on after a button press. The setting Always Off means the backlight never turns on; the setting Always On means the backlight never turns off. The setting Daytime means the backlight will turn on at 7am and off at 7pm.
Home Screen	This field allows the user to display concentrations on the Home Screen in three formats. Inst. only which displays only the instantaneous concentration reading. Inst & Avg which displays both instantaneous and average concentration on the Home Screen . Avg. Only which only displays the average concentration reading. The average is measured over the time period set in Measurement Settings Menu (refer to Section 3.5.18).
Char 0 has Slash	When enabled, the instrument will display the zero character with a slash (0) to differentiate it from a capital "O".

3.5.18 Measurement Settings Menu

Main Menu → Measurement Setting Menu

Average Period Allows the user to set the averaging period from 1 min to 24 hours	S
---	---

Min. Data Capture	Controls how much of the previous time period needs to be included before the average yields a number.
	The default is 0 %, which reflects past behaviour of the instrument:
	turning on a machine with 15 minute averaging and a setting of 0
	% at 1:01 or 1:14 would produce #### until 1:15 (because at 1:15,
	there was at least 1 valid measurement to construct the average
	from). Setting 100 % would mean the value stayed #### until 1:30
	(because there needs to be a complete 15 minutes worth of
	measurements to construct the average from).

3.5.19 Calibration Menu

Main Menu → Calibration Menu

Photometer	Displays the current photometer reading.
Average	Displays the average photometer reading based off the average set up in the Measurement Settings Menu (refer to Section 3.5.18).
Audit Mode	Sets the instrument to sample from an external Ozone source. Used for calibration of the photometer. Refer to section 5.6.
Span Calibrate O3	Calibrate the photometer span point to the current reading. Note the instrument must be running a photometer point before it will enable this function.
Zero Calibrate O3	Calibrate the zero point to the current reading. Note the instrument must be running a zero point before it will enable this function.
Pressure Calibration Menu	Refer to section 3.5.20.
Ozone Calibration Menu	Refer to Section 3.5.21.
Flow Calibration Menu	Refer to Section 3.5.22.
MFC Calibration Menu	Refer to Section 3.5.23.
Pressure O3	The instrument cell pressure in the photometer during the last calibration.
Temperature	The instrument temperature during the last calibration.

3.5.20 Pressure Calibration Menu

Main Menu → Calibration Menu → Pressure Calibration Menu

Vacuum Set Pt.	The zero point for the calibration. Activating this item will open a dialog box of instructions. Refer to Section 5.3 for the calibration procedure.
Ambient Set Pt.	The high point for the calibration. Activating this item will open a dialog box of instructions. Refer to Section 5.3 for the calibration procedure.

Pressure Units	Select the units that the pressure will be displayed in (torr, PSI, mBar, ATM or kPa).
Ambient	The current ambient pressure (displayed in pressure units and as a raw voltage).
Cell	The current photometer reaction cell pressure (displayed in pressure units and as a raw voltage).
Internal Pump	The current internal pump pressure (displayed in pressure units and as a raw voltage).
O3 Flow	Calibrates the ozone flow. Refer to Section 5.2 for the calibration procedure.
Vacuum Cal Mode	Defaults to OFF. When turned ON, the valves will be set to the same state as during a Vacuum Set Pt. adjustment, but there is no adjustment. Used for checking the accuracy of the vacuum pressure calibration. There are no dialog boxes or prompts, so the user needs to follow similar steps and precautions as during Vacuum Set Pt.
Ambient Cal Mode	Defaults to OFF. Similar to Vacuum Cal Mode, except the valves are set to check the ambient cal.

3.5.21 Ozone Calibration Menu

Main Menu → Calibration Menu → Ozone Calibration Menu

Diluent	Diluent gas for the ozone calibration.
Flow	Specify the flow desired for the ozone generator calibration process.
Min Range	This is the minimum value for the ozone generator calibration. The calibration is performed between the Min and Max values.
Max Range	This is the maximum value for the ozone generator calibration. The calibration is performed between the Min and Max values.
Ozone Calibration	Refer to Section 5.4 for the calibration procedure.
Reset Ozone Cal	Resets the ozone generator calibration to factory default. Photometer calibrator remains unaffected.

3.5.22 Flow Calibration Menu

Main Menu → Calibration Menu → Flow Calibration Menu

Cell	The current pressure in the photometer measurement cell.
Photometer	Current photometer gas flow.
Internal Pump	This is the pressure reading from the internal photometer pump flow block PCA.

Internal Pump	This field allows the internal photometer pump to be turned on or off. This field is only editable when the Flow Control field is set to MANUAL .
Pump Control	Set to MANUAL to disable the automatic flow control. AUTO allows the flow PID to modify the pump coarse and fine settings. START will transition to AUTO after one second.
Coarse	Internal photometer pump speed control (Coarse). This field is only editable when the Flow Control field is set to MANUAL .
Fine	Internal photometer pump speed control (Fine). This field is only editable when the Flow Control field is set to MANUAL .
Valve Menu	Refer to section 3.5.29.

3.5.23 MFC Calibration Menu

Main Menu → Calibration Menu → MFC Calibration Menu

This menu allows a manual calibration of each MFC.

Standard Temperature	User selected reference temperature of reference flow during subsequent MFC calibrations.
Gas	Indicate which gas is being provided. This is used to calculate the MFC correction factor.
Points	Select the number of points to include in the calibration (5-10).
MFC Calibration	Refer to Section 5.1 for the calibration procedures.
Coeff. A0	The polynomial terms for the MFC calibration. Default is 0.
Coeff. A1	The polynomial terms for the MFC calibration. Default is the maximum flow of the MFC in sccm divided by 5.
Coeff. A2	The polynomial terms for the calibration. Default is 0.
Readout Calibration	Refer to Section 5.1.3 for the calibration procedures.
Coeff. A0	The polynomial terms for the readout calibration. Default is 0.
Coeff. A1	The polynomial terms for the readout calibration. Default is 1.
Coeff. A2	The polynomial terms for the readout calibration. Default is 0.

3.5.24 Service Menu

Main Menu → Service Menu

Diagnostics Menu	Refer to Section 3.5.25.
Calculation Factors Menu	Refer to Section 3.5.33.
Load Auto-Backup Config.	Loads the auto-backup configuration file. The configuration is automatically backed up every night at midnight.
Load Configuration	Loads a configuration file from the USB memory stick.

Save Configuration	Saves all of the EEPROM-stored user-selectable analyser configurations to the USB memory stick (calibration and communication settings, units, instrument gain, etc.). If there are problems with the analyser use this function to save settings to the removable USB memory stick and send this file (and the parameter list) to your supplier with your service enquiry.
Save Parameter List	Saves a text file of various parameters and calculation factors. If you have problems with the analyser use this function to save settings to the removable USB memory stick and send this file (and the configuration) to your supplier with your service enquiry.
Instrument	This field allows the analyser to be set to either Online (normal instrument operation) or In Maintenance (data is flagged as invalid).
Next Service Due	Displays when the next scheduled service is due.
Safely Remove USB Stick	This command must be activated to safely remove the USB memory stick.
System Restart	Activating this will restart the calibrator.

3.5.25 Diagnostics Menu

Main Menu → Service Menu → Diagnostics Menu

Digitals Pots Menu	Refer to Section 3.5.26.
Internal Pump Menu	Refer to Section 3.5.27.
Internal Diluent Menu	Refer to Section 3.5.28.
Valve Menu	Refer to Section 3.5.29.
Tests Menu	Refer to Section 3.5.30.
Pres/Temp/Flow Comp.	Set either ON or OFF. OFF is used when running diagnostics to see fluctuations in readings. The default state is ON, to compensate for environmental fluctuations.
Control Loop	When ENABLED is selected, the microprocessor maintains control of the digital pots; when DISABLED is selected, the microprocessor does not control the digital pots and the user can manually adjust the digital pots. The red traffic light will be on while the control loop is disabled.

3.5.26 Digital Pots Menu

Main Menu → Service Menu → Diagnostics Menu → Digital Pots Menu

Digital pots are electronically controlled digital potentiometers used for adjustments to operations of the instrument. This menu should be accessed only during diagnostics.

Unless the **Control Loop** is **Disabled** (refer to Diagnostics Menu, Section 3.5.25), changes to the pots may be modified by the instrument. This is intentional; some diagnostics are best done with instrument feedback and some are best done without.

Lamp Current 9.5-10.5	Displays the UV lamp current in mA.
-----------------------	-------------------------------------

PGA Gain	1-128	Displays the gain of the PGA.
Input Pot	50-200	Reduces the raw signal to measurable level.
Conc. Voltage (RAW)	0-3.1	The concentration voltage measured by the analog to digital converter.
Conc. Voltage	0-3.1	The concentration voltage after adjustment for the PGA gain factor.
Meas. Zero Pot (COARSE)	50-200	Electronic zero for the measure channel.
Meas. Zero Pot (FINE)	0-255	Electronic zero for the measure channel.
Ref. Voltage	1.5-4	The reference voltage of the detector.
O3 Gen. Override	On-Off	When On, enables the user to manually control of the O_3 generator.
O3 Gen. Enable	On-Off	When On allows the user to turn on or off the O_3 generator. Only editable if the Override is On .
O3 Gen. DAC	0-65535	O_3 generator lamp. Only editable if the Override is On . The O_3 generator is controlled either by a coarse and fine pot or a DAC.
O3 Gen. Current	0-4.9	The $\ensuremath{O_3}$ generator lamp current, as determined by the pot or DAC setting.
Diagnostic Mode	Operate	 Operate (default): Puts the instrument in normal operation mode. Electrical: Injects an artificial test signal into the electronic processing circuitry on the main controller PCA to verify that the circuitry is operating correctly. When in this Diagnostic Mode, adjust the Diagnostic Test Pot from 0 to 255. This will produce a change in the concentration voltage as well as the indicated gas concentration. Preamp: Injects an artificial test signal into the Preamplifier mounted on the Optical Cell to verify that the Preamplifier, cabling and electronic circuitry on the main controller PCA is operating correctly. When in this Diagnostic Mode, adjust the Diagnostic Test Pot from 0 to 255. This will produce a change in the concentration voltage as well as the indicated gas concentration.
Diagnostic Test Pot	0	This Digital Pot is used for diagnostics only. When in the Electrical or Preamp Diagnostic Mode , this Digital pot should be adjusted from 0 to 255. This will produce a change in the concentration voltage as well as the indicated gas concentration.
Valve Drive V Pot	0	Additional valve drive voltage pot that is used by technicians when troubleshooting.

3.5.27 Internal Pump Menu

Main Menu → Calibration Menu → Flow Calibration Menu

Cell	The current pressure in the photometer measurement cell.
Photometer	Current photometer gas flow.

Internal Pump	This is the pressure reading from the internal photometer pump flow block PCA.
Internal Pump	This field allows the internal photometer pump to be turned on or off. This field is only editable when the Flow Control field is set to MANUAL .
Pump Control	Set to MANUAL to disable the automatic flow control. AUTO allows the flow PID to modify the pump coarse and fine settings. START will transition to AUTO after one second.
Coarse	Internal photometer pump speed control (Coarse). This field is only editable when the Flow Control field is set to MANUAL .

3.5.28 Internal Diluent Menu

Main Menu → Service Menu → Diagnostics Menu → Internal Diluent Menu

Internal Diluent	When Disabled valve thirteen is switched to change the source of diluent air to an external source (Ext Diluent Port). When Enabled the diluent air is sourced Internally.
Pump	Internal diluent pump speed control pot.
Flow	The current diluent gas flow.
Pump Adjust	When you get a flow fault the user can select pump adjust and the instrument automatically increases the diluent pump pot until the flow fault is resolved. Prior to running Pump Adjust, the user must ensure the following:
	With the user's standard setup connected to the outlets, including vents and other instruments, choose 'a' or 'b' from below. If external diluent air is available, it is preferable to use the external diluent air option.
	a) Connect to External DIL air, pressure 150-180 kPa.
	 Ensure the O3 Gen flow has been calibrated. (80 sccm and 100 sccm) and all plumbing is returned to normal.
	 Run a Photometer Zero point at 4 slpm.
	 Adjust the pressure regulator inside the Serinus Cal 300 until the O3 gen flow displays 100 sccm +/- 1 sccm on the home screen.
	 b) Change the Internal Diluent pump speed control pot to 255
	 Ensure the O3 Gen flow has been calibrated. (80 sccm and 100 sccm) and all plumbing is returned to normal.
	 Run a Photometer Zero point at 4 slpm.
	 Adjust the pressure regulator inside the Serinus Cal 300 until the O3 gen flow displays 100 sccm +/- 1 sccm on the home screen.
	After adjusting the O3 gen flow, run the Pump Adjust routine. This routine will automatically enable the internal pump if it was disabled, then return the enabled/disabled setting to its prior state when done. The routine sets the pump pot to 30, then moves up until the desired Diluent and O3 Generator flow is achieved when

set to 5 slpm. This typically takes about 2 minutes. As nev	v, the
Pump control speed pot will be around 80.	

3.5.29 Valve Menu

Main Menu → Service Menu → Diagnostics Menu → Valve Menu

The Valve Menu allows the user to observe the instrument-controlled switching of the valves. If the valve is On it means the valve is energised. When a three way valve is in the On state the NC (normally close) port will be open and the NO (normally open) port will be closed. When the valve sequencing is disabled the user has the ability to turn the valve Off and On manually. It is recommended that the valve menu be used by a trained technician following the plumbing schematic (refer to Section 9.5).

Note: When interpreting the information below regarding the flow path through the valve note that (NC = Normally Closed), (NO = Normally Open) and (C = Common).

Valve Sequencing	When Enabled the valves will open and close under instrument control (even if you have manually opened or closed a valve). When Disabled the valves will change only in response to manual controls.
V4: Audit	Shows the status of the audit valve. When the valve is on, the calibrator is in audit mode ready for an external O_3 source. When the valve is off it utilises the internal O_3 generator supply.
V8: Photometer	Shows the status of the photometer valve. When the valve is off the photometer is sampling reference air and when the valve is on the photometer is sampling ozone.
V13: Internal Diluent	Shows the status of the dilution selection valve. When the valve is on the diluent is sourced internally. When the valve of off the diluent is sourced from an external source.
Diluent Supply	This output can be used to automatically turn on the diluent supply when it is required.
Internal Diluent Pump	Shows the status of the internal diluent pump allowing the user to turn the pump on and off when required.

3.5.30 Tests Menu

Main Menu → Service Menu → Diagnostics Menu → Tests Menu

Screen Test	Performs a screen test by drawing lines and images on the screen so that the operator can determine if there are any faults in the screen. Press a keypad key to step through the test. The up and down scrolling buttons will adjust the contrast.
Digital Input Test Menu	Refer to Section 3.5.31.
Digital Output Test Menu	Refer to Section 3.5.32.

3.5.31 Digital Input Test Menu

Main Menu → Service Menu → Diagnostics Menu → Tests Menu → Digital Input Test Menu

Note: Entering the **Digital Input Test Menu** will temporarily disable the control of all digital and analog input/outputs. This will affect logging via these outputs. Exiting the menu restores automatic control.

Input 07	Displays the status of the 0-7 digital input pins. Value will be 0 or 1.

3.5.32 Digital Output Test Menu

Main Menu → Service Menu → Diagnostics Menu → Tests Menu → Digital Output Test Menu

Note: Entering the **Digital Output Test Menu** will temporarily disable the control of all digital and analog input/outputs. This will affect logging via these outputs. Exiting the menu restores automatic control.

Automated Test	Steps through each output, turning it on and off.
Output 07	Displays the state of the output pin (ON or OFF), and allows the user to manually set the state.

3.5.33 Calculation Factors Menu

Main Menu → Service Menu → Calculation Factors Menu

Instrument Gain	A multiplication factor used to adjust the concentration measurement to the appropriate level (set at calibration).
Zero Offset O3	This field displays the offset created from a zero calibration. This is the concentration measured from zero air and is subtracted from all readings.
Background	The correction factor calculated from the background cycle (used to eliminate background interferences).
PTF Correction O3	Displays the correction factor applied to the concentration measurement. This correction is for changes in pressure, temperature and flows since the last calibration.
Noise	 The standard deviation of the concentration. The calculation is as follows: Take a concentration value once every two minutes. Store 25 of these samples in a first in, last out buffer. Every two minutes, calculate the standard deviation of the current 25 samples. This is a microprocessor-generated field and cannot be set by the user. Note: This reading is only valid if zero air or a steady concentration of span gas has been supplied to the instrument for at least one hour.

3.5.34 Communications Menu

Main Menu → Communications Menu

Configures how the instrument communicates with external instrumentation and data loggers.

Data logging Menu	Refer to Section 3.5.35.
Serial Communication Menu	Refer to Section 3.5.36.
Analog Input Menu	Refer to Section 3.5.37.
Analog Output Menu	Refer to Section 3.5.38.
Digital Output Menu	Refer to Section 3.5.39.
Network Menu	Refer to Section 3.5.40.
Bluetooth Menu	Refer to Section 3.5.41.

3.5.35 Data Logging Menu

$\mathbf{Main\ Menu \to Communications\ Menu \to Data\ Logging\ Menu}$

When editing the numeric or text menus, the "-" key will delete the current parameter and move the others up to take its place; the "+" key will insert a parameter at the current location and move the ones below it down. The internal logger can log a maximum of 12 parameters.

Data Log Interval	Displays the interval at which the data is saved to the USB memory stick. Selecting 1 sec interval may result in occasional measurements not being logged or slow response to serial commands.
Data Log Setup –Numeric	Numeric list of the parameters logged. This is a quicker way to enter parameters (for lists of parameters refer to Table 37).
Data Log Setup –Text	Select the list of logged parameters by name.

3.5.36 Serial Communication Menu

Main Menu → Communications Menu → Serial Communications Menu

Serial ID	This is the ID of the analyser when using Multidrop RS232 communications. This ID can be changed to support multiple instruments on the same RS232 cable. The default is 0 for the Serinus Cal 300.
Bayern-Hessen Serial ID [Bayern-Hessen Protocol]	This is the Bayern-Hessen ID used by the Bayern-Hessen Protocol.
O3 ID [Bayern-Hessen Protocol]	This is the ID of the O₃ gas used by the Bayern-Hessen Protocol.
Service port (RS232 #1) Multidrop port (RS232 #2)	The port parameters below are repeated for each serial port.

Serial Delay	Some older communications systems require a delay before the analyser responds to a serial command. Enter the number of milliseconds of delay required here (0-1000). The default is
	0, meaning the analyser responds as quickly as possible to any serial request.
Baudrate	Sets the baud rate for this serial port (1200, 2400, 4800, 9600, 14400, 19200, 38400, or 115200).
Protocol	Sets the protocol used for this serial port (Advanced, ModBus, EC9800, Bayern-Hessen or GasCal). This must be set to Advanced for Ecotech supplied software.
Endian [Modbus Protocol]	Select Little or Big endian mode for ModBus protocol.

3.5.37 Analog Input Menu

Main Menu → Communications Menu → Analog Input Menu

The Serinus Cal 300 supports 3 analog inputs from the 25 pin I/O connector. Each input is a 0 to 5 volt CAT 1 input that can be scaled and logged to the internal memory, or accessed remotely as parameters 199-201.

CAUTION

Exceeding these voltages can permanently damage the instrument and void the warranty.

Input 1/2/3	The sections below are repeated for each analog input.
Multiplier	The input voltage will be multiplied by this number. For example, if a sensor has a 0-5 V output for a temperature of -40 °C to 60 °C, the multiplier would be $(60-(-40))/5 = 20$.
Offset	This value will be added to the above calculation. Continuing the example in the multiplier description, the offset should be set to -40, so that a voltage of 0 V, will be recorded as -40 °C.
Reading	The current reading from the input voltage, after the multiplier and offset has been applied. This is the value that is logged or reported as parameter 199-201 via USB or serial requests.

3.5.38 Analog Output Menu

The Serinus Cal 300 has one available analog output, called Channel 1 (or sometimes AO1) on screen and is linked to AO1 on the rear panel 25 pin connector. Refer also to Figure 35.

Main Menu → Communications Menu → Analog Output Menu

Output Mode	The analog output can be set to be either Current or Voltage . Different fields will be displayed depending on which analog
	output type is selected.

Channel 1	Channel 1 as default will be setup to be Parameter 50, which is O3 instantaneous reading. This Channel can be user defined to any of the available parameters (for a list of parameters refer to Table 22.
Name	Text list of user selectable parameters defined to output through the analog output (for a list of parameters refer to Table 22). Channel 1 on screen = AO1 on the 24 pin connector.
Parameter	Numeric list of user selectable parameters defined to output through the analog output. This is a quicker way to enter parameters (for a list of parameters refer to Table 22). Channel 1 on screen = AO1 on the 24 pin connector.
Min Range	Sets the lower range limit (in concentration units). This is the value at which the analog output should be at its minimum. For example, 4 mA for a 4 to 20 mA current output.
Max Range	Sets the upper range limit (in concentration units). This value can be edited but cannot exceed the Over Range value. This is the value at which the analog output should be at its maximum. For example, 20 mA for a current output.
Over-Ranging	Set to Enabled or Disabled to turn the over-ranging feature on or off.
Over-Range [Over-Ranging Enabled]	This field is only visible when Over-Range is set to Enabled . Set to the desired over range value. This value cannot be set below the Range value. This is the alternate scale the used for the analog output when over-ranging is active and enabled. When 90 % of the standard range is reached, this over range is automatically entered. When 80 % of the original range is reached, it returns to the original range.

3.5.38.1 Analog Output Menu - Voltage

Main Menu → Communications Menu → Analog Output Menu

These items appear when **Output Mode** is set to **Voltage**.

Voltage Offset	Choices are 0 V , 0.25 V , and 0.5 V . This sets the voltage for a reading of 0. Since the output cannot go negative, this offset can be used to record negative readings.
0.5V Calibration	Enables the user to calibrate the analog output at a low point. Increase/decrease the value until the connected equipment reads 0.5 V.
5.0V Calibration	Enables the user to calibrate the analog output at maximum output (5 V). Increase/decrease the value until the connected equipment reads 5 V.

3.5.38.2 Analog Output Menu - Current

Main Menu → Communications Menu → Analog Output Menu

These items appear when **Output Mode** is set to **Current**.

Current Range	Enables the user to set desired current ranges. Choices are 0 -
	20 mA, 2-20 mA or 4-20 mA .

4mA Calibration	Enables the user to calibrate the current output at a low point. Increase/decrease the value until the connected equipment reads 4 mA.
20mA Calibration	Enables the user to calibrate the current output at a full scale point (20 mA). Increase/decrease the value until the connected equipment reads 20 mA.

3.5.39 Digital Output Menu

Main Menu → Communications Menu → Digital Output Menu

The digital outputs are shared among digital alarms and point and sequence definitions. A digital output that is designated as a digital alarm will display an **R** instead of a **0**, **1**, or **X** in the digital mask.

Idle Mask	This is the state of the digital outputs when the instrument is IDLE . When the instrument is running a point or sequence, the digital output masks for the point, sequence, and digital alarms will be combined (OR operation) with this pattern (any bit that is a 1 in either this mask, the point mask, the sequence mask, or the a digital alarm will be set to 1).
DO N (Pin X)	Associates a state with a digital output. There are 8 digital outputs (the pin numbers are for the 25-pin connector). Each one can have one of the associated states listed in Table 3 – Digital Output States. The pin will be driven high while the analyser is in that state.
	If a pin is set to anything other than Disabled , that pin will not be available for point or sequence masks.
Active	Each pin can be set to be active High or Low . Active High means that the pin will be pulled to 5 V when the associated event occurs. Active Low means the pin will be pulled to 0 V when the associated event occurs.

Table 3 – Digital Output States

Digital Output State	Description
Disabled	No state (this output is never set high).
Pwr Supply Fail	Power supply fault.
Ref Volt. Fail	Reference voltage fault.
A2D Fail	Analog to digital fault.
Lamp Fail	Lamp fault.
Flow Fail	Photometer flow fault.
Flow Heat Fail	Flow block heater fault.
Lamp Heat Fail	Lamp heater fault.
Chassis Tmp Fail	Chassis temperature fault.
USB Disconnected	The USB memory stick is disconnected.
Background	Performing a background.
Span	Performing a span check.

Digital Output State	Description
Zero	Performing a zero check.
System Fault	Any system fault (the red light is on).
Diluent Flow Fault	A diluent flow fault.
Maintenance Mode	User has activated maintenance mode.
Over Range AO 1	Over range for analog output channel 1 (AO1 on 25 pin connector) is active.

3.5.40 Network Menu

Main Menu → Communications Menu → Network Menu

The **Network Menu** only appears when the **Network Port** is enabled (refer to **Hardware Menu**, Section 3.5.45). The Network Menu allows the user to view or set the I.P. address, Netmask and Gateway if the optional network port is installed.

Start-up Mode	The following modes are available:
	NORMAL : In this mode nothing is done with the network port during boot-up. It is assumed to be configured correctly or unused.
	READ IP : This mode interrogates the network port for its IP address. The menu will display the network address after boot-up.
	SET IP : You may enter an IP address, Netmask, and Gateway address (following the usual rules for formatting these addresses).
	Note that at this time the instrument does not validate the correctness of these entries.
	When you cycle power, the instrument will first instruct the network port on its new address. It will switch to Read IP mode and read back the address it just set so that you may verify it in the menu.
	Set DHCP : This sets the network port into DHCP mode, allowing the network to assign the instrument an IP address.
IP Address [Read or Set mode]	This is the current IP address of the instrument.
Netmask [Read or Set mode]	This is the subnet mask of the network the instrument is connected to.
Gateway [Read or Set mode]	This is the IP address of the router to access addresses not on the same subnet.
Adaptor is in DHCP mode [DHCP mode]	In this mode the instrument will ask for its network parameters from a DHCP server on your network.
Protocol	Sets the protocol used for the network port (Advanced , ModBus , EC9800 , Bayern-Hessen or GasCal). This must be set to Advanced for Ecotech supplied software.
Endian [Modbus Protocol]	Select Little or Big endian mode for ModBus protocol.

To read the IP address, perform the following steps:

- 1. Set the instrument to Read IP.
- 2. Manually cycle power off.
- 3. Wait 3 seconds.
- 4. Turn power on.
- 5. Read or set the IP address.

3.5.41 Bluetooth Menu

Main Menu → Communications Menu → Bluetooth Menu

Serinus Cal instruments support Bluetooth communication through the Serinus Remote Android Application (refer to Section 4.7).

Note: If the user has security concerns about the Bluetooth, it can be disabled by disconnecting the ribbon cable connecting the Bluetooth module to the main controller PCA. This will disable the Bluetooth and remove the Bluetooth menu item from the communications menu after a power cycle.

Bluetooth	This field indicates whether the instrument is remotely connected to an Android device.
Reset	After changing the ID or PIN, it is necessary to reboot the Bluetooth module. This is done by resetting the instrument or by using this menu item to reboot only the Bluetooth.
ID	This is the Bluetooth ID of the instrument. Use the keyboard to edit this field (refer to Section 3.3.1 for instructions on entering text with the numeric keypad).
	The default setting is the Serinus ID/Serial Number.
	Note: The word Serinus is always the first part of the name and cannot be edited.

3.5.42 Trend Display Menu

Main Menu → Communications Menu → Trend Display Menu

Parameter	Allows the user to select a parameter from 0 – 254 to graph on the trend display.
Name	Displays the name of the Parameter the user has selected.
Autoscale	Autoscale can be on or off. When it is "On" the parameter will be scaled automatically for user convenience based on the current values logged.
Min	This is the minimum scale of the chart as defined by the Autoscale or the user.
Max	This is the maximum scale of the chart as defined by the Autoscale or the user.
Clear	Clears the current data points in the Chart .

Data Log Interval	The data log interval can be user set from 1 sec interval up to 24 hours.
Chart	This field enters a screen with a graph of the user selected Parameter (Refer to Section 3.5.43).

3.5.43 Chart

Main Menu → Communications Menu → Trend Display Menu → Chart

The chart allows the user to select a parameter and view it in a real time chart. The user can select from the 254 parameters available (refer to Table 37). Changing the logged parameter will reset the chart. However, up to the first four Instantons gas and Ozone values are always memorized. Changing the Data Log Interval resets all charts.

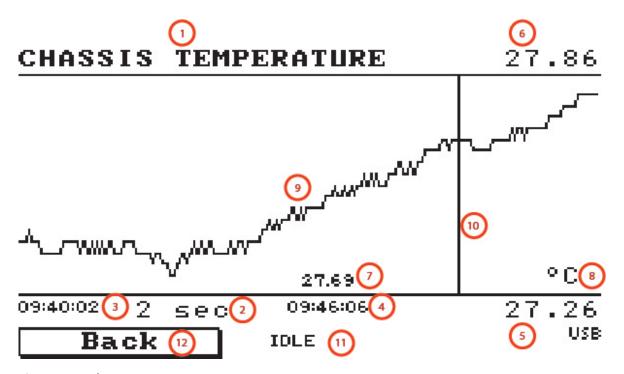


Figure 26 - Chart Screen

Chart Title (1)

Displays the name of the parameter as it would be displayed on the advanced protocol parameter list.

Data Log Interval (2)

Displays the value of the data logging interval as determined by the user in the Trend Display Menu (refer to Section 3.5.42).

Chart X-Axis (3 & 4)

- (3) Displays the time stamp for the oldest data point (left hand side).
- (4) Displays the time stamp for the newest data point (right hand side) or if the cursor is active it displays the current cursor data point time stamp.

Chart Y-Axis (5 & 6)

- (5) This is the minimum scale as defined by the autoscale or the user (refer to section 3.5.42).
- (6) This is the maximum scale as defined by the autoscale or the user (refer to section 3.5.42).

Current Data Point Value (7)

Displays the current value of the newest data point unless the **cursor** is active then is displays the current cursor data point value.

Units (8)

Displays the units of measure for the parameter that the user has selected.

Data Points (9)

Displays the last 240 data points recorded for the selected parameter.

Chart Cursor (10)

If the user wishes to know the value at any at a particular data point on the chart, the cursor can be used. The cursor is activated by pressing the (-) key on the keypad and is represented by a vertical line on the chart. The cursor can be moved left or right by the (-) or (+) key respectively. This cursor location now represents the current data point value of interest. The cursor will stay with the chosen data point and move with the updating chart. When the cursor finally hits the end of the chart it deactivates and the current data point value will now be the latest data point entering the chart.

Mode (11)

This Field indicates the mode the instrument is currently running.

Back (12)

Pressing back allows the user to access other menu items while the chart is still logging in the background.

Digital Output State	Description
Left Selection Button	Returns the user back to the trend display menu.
Scrolling Buttons	Using the scrolling buttons will cycle through the user selected parameter as well as any default gas(es) currently logging.
- Button	Pressing the (-) button will bring up the cursor and move it to the left.
+ Button	Pressing the (+) button will move the cursor to the right. When the cursor moves all the way to the right due to the chart moving it will deactivate.

3.5.44 Advanced Menu

This menu is accessed via a different method than the other menus. From the **Home Screen** press the following keys: $(\overline{})99(_{\rm SPACE}^{})$

This menu contains technical settings, diagnostics and factory hardware installations. No items in this menu should be accessed without authorisation and supervision of qualified service personnel.

Language	Select a language.
Hardware Menu	Refer to Section 3.5.45.
Service Displays	When set to On , new items appear on many different menus. These fields are for diagnostic and service personnel only. Default is Off .
Next Service Due	Enter the next service due date.
Jump to Next State	Move to the next mode (for example, from fill to measure). This command is most commonly used to force an instrument out of warm-up early.
Parameter Display Menu	Refer to Section 3.5.47.
Reset to Factory Defaults	Reset the configuration to factory defaults. This will erase all calibrations and user configuration information.
Rebuild Index	If a data log becomes corrupted it may be possible to restore It by rebuilding its index file. This command will ask you to specify a month and will rebuild the index for that month. This operation can take many minutes and it should not be interrupted. While the file is rebuilding any data logging will be suspended.

3.5.45 Hardware Menu

Advanced Menu → Hardware Menu

This menu contains factory hardware installations. If you reset to factory defaults you may need to revisit this menu to re-install optional features.

Model	Select the instrument model. Normally this only needs to be reset when the configuration is corrupted. The selections available will depend on licensing. It is not recommended to run an instrument with firmware set to an incorrect model.
Front Panel Style	Choosing the incorrect front panel will result in the traffic lights behaving inconsistently. Default is Aluminium .
Network Port	The instrument has a network port. Default is Disabled .
Orifice Size	Specify the input orifice for the calibrator. Note that unlike the Serinus line of analysers, the Serinus Cal 300 uses both an orifice and an internal pump. Default is 0.3 .
Analog Dew Point	The instrument has a diluent Dew Point option installed. Default is Disabled .
Ozone Lamp	Specifies the type of lamp used in the ozone generator. Default is Standard .
MFC Installation Menu	Refer to Section 3.5.46.
Shielded Bench	The instrument has a shielded bench. Default is Enabled .

3.5.46 MFC Installation Menu

Advanced Menu → Hardware Menu → MFC Installation Menu

Select an MFC by capacity (i.e. **5000 SCCM**) from the list of supported capacities. When an MFC is selected, the polynomials for its calibration will be displayed along with its corresponding readout calibration.

MFC Diluent	The primary diluent MFC.
Coeff. A0	Co-efficient for MFC.
Coeff. A1	Co-efficient for MFC.
Coeff. A2	Co-efficient for MFC.
Readout Calibration	Each available MFC will have its own Correction Co-efficient for the MCF readout.
Coeff. A0	Co-efficient for Readout calibration.
Coeff. A1	Co-efficient for readout calibration.
Coeff. A2	Co-efficient for readout calibration.

3.5.47 Parameter Display Menu

Advanced Menu → Parameter Display Menu

Used to display a parameter in real-time on the screen (refer to Table 37 for a full list of parameters).

Data Parameter Enter the advanced protocol parameter number.	
Name	Displays the name of the selected parameter.
Value	Displays the current value of the selected parameter.

This page is intentionally blank

4. Communications

The Serinus has a number of different interfaces for communication with other equipment (RS232, USB, 25 pin digital/analog input/output, TCP/IP network (optional) and Bluetooth). A demonstration version of Ecotech's Airodis software is included with the instrument, enabling basic data downloads and remote operation from a PC running a supported MS Windows operating system. The full version of Airodis is available separately, and includes automated collection, data validation, and complex reporting by multiple users. Refer to the Airodis Manual and Section 4.6 of this manual for details on setting up and communicating with the Serinus.

Figure 27 – Communication Ports

4.1 RS232 Communication

RS232 communication is a very reliable way to access data from the instrument, and is recommended for use in connection to a data logger for 24/7 communication. Both RS232 ports are configured as DCE, and can be connected to DTE (Data Terminal Equipment such as a data logger or computer).

Port #2 also supports a multidrop arrangement (a configuration of multiple analysers connected via the same RS232 cable where the transmit signal is only asserted by the instrument that is spoken to).

For reliable Multidrop RS232 communications please follow these guidelines:

- Verify that the Multidrop ID is set to a unique value which is different to the other analysers in the chain (refer to Serial Communication Menu, Section 3.5.36).
- All of the analysers in the multidrop chain must have the same baud rate and communication protocol settings. A maximum of 9600 baud is recommended.
- The Multidrop RS232 cable should be kept to less than 3 meters in length.
- A 12K ohm terminating resistor should be placed on the last connector of the cable. (Connect from pin 2 to pin 5 and from pin 3 to pin 5) (Refer to Figure 28).
- The shielding of the Multidrop cable must be continuous throughout the cable.
- The shielding of the Multidrop cable must only be terminated at one end. It should be connected to the metal shell of the DB 9 way connector.

Figure 28 - Multidrop RS232 Cable Example

4.2 USB Communication

This is ideal for irregular connection to a laptop running Ecotech's Airodis software to download logged data and remotely control the instrument. Due to the nature of USB, this is a less reliable permanent connection as external electrical noise can cause USB disconnection errors on a data logger.

Please note that only the Advanced protocol (refer to Table 37) is supported for USB communication.

4.3 TCP/IP Network Communication (optional)

Instruments with the optional network port installed can be accessed using a TCP/IP connection. Figure 29 shows examples of some possible configurations for remote access.

Direct Connection Serinus Computer IP:192.168.0.2 IP:192.168.0.3 Cross-over LAN Cable LAN Serinus Modem/Router Computer IP:192.168.0.2 IP: 192.168.0.1 IP:192.168.0.3 LAN Cable LAN Cable /Wireless WAN Serinus Modem/Router Computer LANIP: 192.168.0.2 LAN IP: 192.168.1.1 LAN IP:192.168.1.3 LANIP: 192.168.0.1 WANIP: 192.125.125.1 WAN IP: 192.125.120.1 ISP1/Internet LAN Cable LAN Cable /Wireless ¹ ISP: Internet Service Provider

Figure 29 – Example of Typical Network Setups

Note: In Figure 29 all the IP addresses are taken as an example. The WAN IP addresses are normally provided by your ISP. Whereas, the LAN IP addresses can be set manually to any range which is within the subnet of the Modem/Router/switch.

Use a cross-over LAN cable to connect the instrument directly to a computer, or a standard LAN cable for connection to a Modem/Router/Switch as shown in Figure 29. The computer could be connected to the Modem/Router using either CAT5 cable or a wireless connection, but the instrument must be connected using CAT5/6 cable.

4.3.1 Network Setup

Below is an example of how to setup the network.

- 1. Open Main Menu → Communications Menu → Network Menu.
- 2. Select **Protocol** → **Advanced** Accept.
- 3. Select Start-up Mode → Set IP Accept.
- 4. Edit **IP Address** (Change the IP address to the address you wish to use within the Modem/Router/switch subnet) Accept.
- 5. Edit Netmask (Change the Netmask to the setup specified by the Modem/Router) Accept.
- 6. Edit Gateway (Change the Gateway to the setup specified by the Modem/Router) Accept.

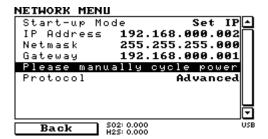


Figure 30 – Example of Network Menu Setup

Once completed, use the power switch on the rear of the instrument to turn the power off. Please leave the instrument off for 10 seconds before turning the power back on.

Note: Manually perform a hardware power cycle every time the IP address is changed for it to take affect.

4.3.2 Port Forwarding on Remote Modem/Router Setup

When using the network port to connect to the router/modem with NAT enabled, you will need to add IP mapping to ensure that data is forwarded through to the desired port. This is known as port forwarding. To set-up the port for the instrument, you will need to go into the modem/router configuration. Normally, you will see the port forwarding setup under Port Forwarding, NAT or Port Mapping menu. Below is an example port forwarding setup.

The default port for the Serinus range of instruments is 32783. The destination address is the instrument IP address setup in the **Network Menu**.

Item	Protocol	Incoming Address	Incoming Port	Destination Address	Destination Port
1	tcp	0.0.0.0	32783 - 32783	192.168.0.2	32783 - 32783

Figure 31 – Port Forwarding Example

4.3.3 Airodis Setup to Communicate with Serinus

Below is an example of Airodis setup for a LAN network. Ensure the IP address is set to the same as on the instrument **Network Menu**.

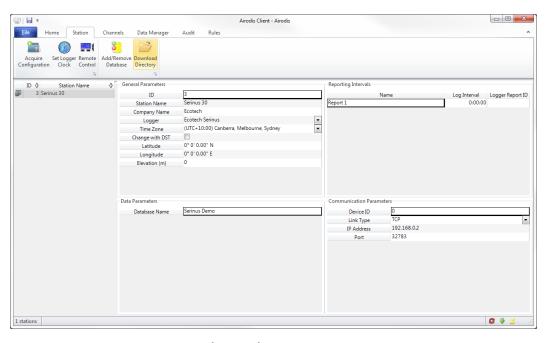


Figure 32 – LAN Network Set-Up (Airodis)

Below is an example of Airodis setup for a WAN network. Ensure the IP address is set the same as on the remote modem/router.

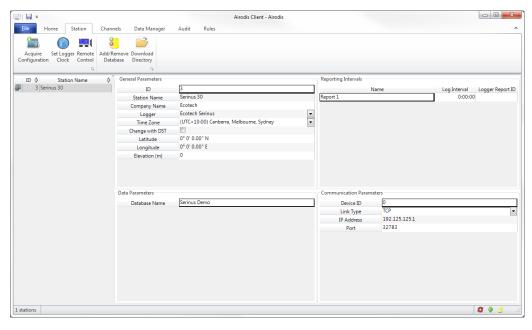


Figure 33 - WAN Network Set-Up (Airodis)

4.4 Digital/Analog Communication

The 25 Pin analog/digital port on the rear of the instrument sends and receives analog/digital signals to other devices. These signals are commonly used for warning alarms.

4.4.1 Analog Outputs

The instrument is equipped with one analog output that can be set to provide either voltage (0-5 V, 0.25-5 V, 0.5-5 V, 0-10 V) or current (0-20, 2-20, 4-20 mA). The parameter that is sent to the analog output is user-selectable (refer to Section 3.5.38).

For 0-10 V analog output operation, set the output type to current and move the jumpers (JP3) on the rear panel PCA to 0-10 V (refer to Figure 34).

Table 4 – Analog Outputs

Analyser	Channel 0	Channel 1	Channel 2
	(AO0)	(AO1)	(AO2)
Serinus Cal 300	N/A	User- Selectable	N/A

4.4.1.1 Analog Outputs Voltage Calibration

Equipment Required

- Multimeter (set to volts)
- Male 25 pin connector with cable

Procedure

- 1. Open Main Menu → Communications Menu → Analog Output Menu (refer to Section 3.5.38).
- 2. Select Output Mode → Voltage.
- 3. Connect a multimeter (using an appropriate adaptor or probes on the multimeter) to the ground (pin 24) and the relevant output pin (pin 23).
- 4. Edit 0.5V Calibration (until the multimeter reads 0.500 V ±0.002) Accept.
- 5. Edit 5.0V Calibration (until the multimeter reads 5.00 V ±0.002) Accept.

4.4.1.2 Analog Outputs Current Calibration

Equipment Required

- Multimeter (set to mA)
- Male 25 pin connector with cable

Procedure

- 1. Open Main Menu → Communications Menu → Analog Output Menu (refer to Section 3.5.38).
- 2. Select Output Mode → Current.
- 3. Connect a multimeter (using an appropriate adaptor or probes on the multimeter) to the ground (pin 24) and the relevant output pin (pin 23).

- 4. Edit 4mA Calibration (until the multimeter reads 4 mA ±0.01) Accept.
- 5. Edit 20mA Calibration (until the multimeter reads 20 mA ±0.01) Accept.

4.4.2 Analog Inputs

The instrument is also equipped with three analog inputs with resolution of 15 bits plus polarity, accepting a voltage between 0-5 V. These go directly to the microprocessor and should be protected to ensure static/high voltage does damage the main controller PCA (instrument warranty does not cover damage from external inputs).

CAUTION

Exceeding these voltages can permanently damage the instrument and void the warranty.

4.4.3 Digital Status Inputs

The instrument is equipped with eight logic level inputs (0 - 5 VDC CAT 1) for the external control of the instrument such as Zero or Span sequences. Each input has a terminating resistor which can be either PULL UP or PULL DOWN. This is set using the jumper JP1 on the back panel PCA (refer to Figure 34).

CAUTION

Exceeding these voltages can permanently damage the instrument and void the warranty.

4.4.4 Digital Status Outputs

The instrument is equipped with eight open collector outputs which will convey instrument status condition warning alarms such as no flow, sample mode, etc. Two of the digital outputs can be set so that there is +5 V and +12 V available on the 25 pin connector for control purposes, instead of digital outputs 0 and 1.

In the default jumper locations (refer to Figure 34) these two outputs will function normally as open collector outputs. If moved to the position closer to the 25 pin connector then the DO 0 will supply +12 V and DO 1 will supply +5 V.

The +12 V and +5 V supplies are limited to about 100 mA each.

Each digital output is limited to a maximum of 400 mA. The total combined currents should not exceed 2 A.

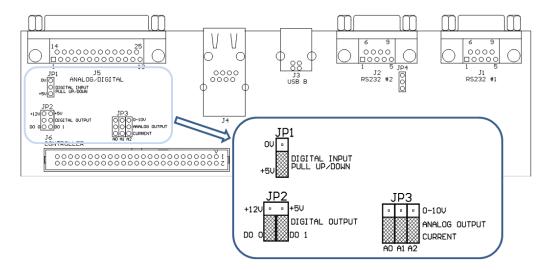


Figure 34 – 25 Pin Rear Panel PCA (Default Jumpers Highlighted)

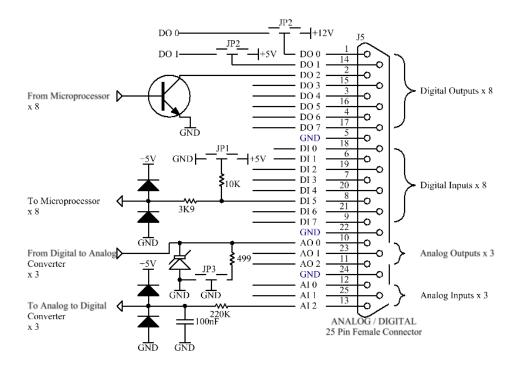


Figure 35 – External 25 Pin I/O Individual Pin Descriptions

CAUTION

The analog and digital inputs and outputs are rated to CAT I. Exceeding 12 VDC or drawing greater than 400 mA on a single output or a total greater than 2 A across the 8 outputs can permanently damage the instrument and void the warranty.

4.5 Logging Data

When the user receives the instrument from the factory it will have a default set of parameters already setup in the internal data logger. These select few parameters have been chosen for their relevance in assisting in troubleshooting the instrument.

4.5.1 Configure Instrument Internal Logging

In order to log data, you must first specify a data logging interval. This is how often data will be logged to the USB memory stick. You can log a maximum of 12 parameters. These parameters can be selected by name or by parameter number using the parameter list (refer to Table 37).

Procedure

- Open Main Menu → Communications Menu → Data Logging Menu (refer to Section 3.5.35).
- 2. Select Data Log Interval (adjust to the desired value) Accept.
- Select Data Log Setup -Numeric (select the parameter numbers you wish to log) or Select -Data Log Setup -Text (select the names of the parameters you wish to log).

4.6 Using Airodis Software to Download Data

4.6.1 Connecting the Serinus to your PC

This instrument can communicate with a PC using RS-232 (Serial), TCP/IP (Network), Bluetooth or USB. Serial, Bluetooth and network communications do not require additional drivers. If you wish to connect using a USB cable, the driver must be installed.

4.6.1.1 Connecting over USB

If you wish to connect using USB, you will need to first install the Serinus USB driver.

1. Power on the instrument and connect it to your PC with a USB cable. You should receive a prompt if the driver needs to be installed. If not, open Device Manager (Under "System" in Control Panel), find the device and select "Update Driver Software".

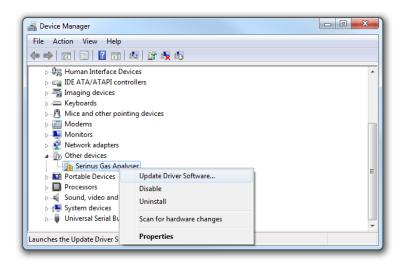


Figure 36 – Installing Driver Software (Device Manager)

2. When prompted where to search for the driver, select "Browse my computer for driver software".

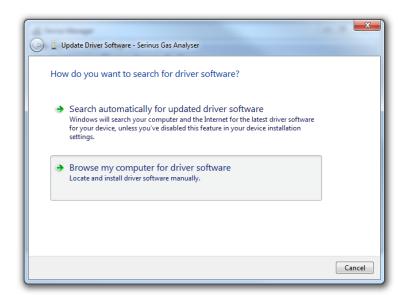


Figure 37 – Update Driver Popup

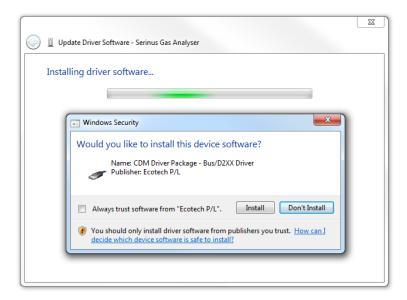

3. The Serinus USB driver is located on the green Ecotech resources USB stick under "\Drivers\Ecotech Analyser". Select this directory and click **Next**.

Figure 38 – Update Driver Popup (Directory Location)

4. If you receive a confirmation prompt to install the driver, select **Install**.

Figure 39 – Installing Driver Confirmation Prompt

5. If everything went smoothly, Windows will inform you that the driver was successfully installed.

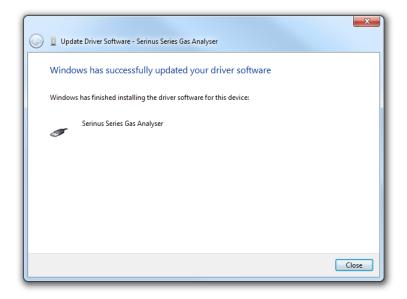


Figure 40 – Successful Driver Installation

4.6.1.2 Connecting over Serial (RS-232)

The following steps outline how to setup the instrument for connection to a PC or datalogger (refer to Section 3.5.36).

Procedure

- 1. Open Main Menu → Communication Menu → Serial Communication Menu.
- 2. Determine which RS232 Port you are physically making the connection with. Remember, multidrop is only supported on RS232 #2.
- 3. Select **Baudrate** \rightarrow 38400 Accept (Set an appropriate baud rate, default is 38400).
- 4. Select **Protocol** → **Advanced** Accept.

If you are running Airodis in a multidrop configuration, ensure that the **Serial ID** is unique for each instrument on the chain.

4.6.1.3 Connecting over Network (TCP/IP)

The following steps outline how to setup the instrument for connection to a PC or datalogger (refer to Section 3.5.40).

Procedure

- 1. Open Main Menu → Communication Menu → Network Menu.
- 2. Select **Protocol** → **Advanced** Accept.
- 3. Select Start-up Mode → Set IP Accept.
- 4. Assign a unique static IP address to the instrument.
- 5. Reboot the instrument by cycling the power.

4.6.2 Installing Airodis

The user can download data from the instrument using either a full retail (paid) version of Airodis or with the demo version which is included on the green Ecotech resources USB stick. The demo version has limited functionality, but will allow you to download and export data from up to three instruments. If you do not already have Airodis, this can be obtained from Ecotech:

http://www.airodis.com.au

The installer is straightforward: Ensure you install the correct version for your operating system. If you are running 64-bit windows, install the 64-bit (x64) version. Otherwise, install the 32-bit (x86) version.

4.6.3 Configuring Airodis

1. Once installed, double click on the Airodis shortcut on the desktop to start Airodis Workspace Manager. You will be presented with the default workspace options. These will suffice for downloading data from the instrument.



Figure 41 - Airodis Workspace Manager

- 2. Start the Client, Server and Download Server by single-clicking the toggle button for each. The client may prompt to register with Ecotech or install an update. Follow the prompts if it does.
- 3. Once the Client application has loaded, click Home→Add Station→New Physical Station.

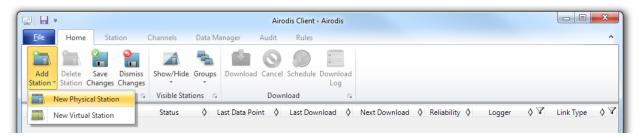


Figure 42 – Adding a New Station

4. This automatically brings you to the **Station** tab on the ribbon. Enter the communication details to connect to the instrument.

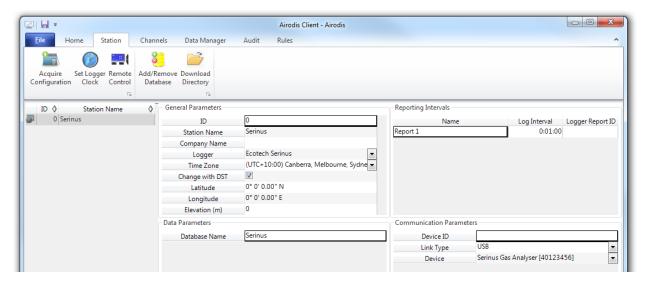


Figure 43 – Adding a New Station

Table 5 – Setting up a New Station via Airodis

Property	Description
Station Name	The name of the station. If you have other loggers, the name is used to distinguish them.
Logger	Set this to "Ecotech Serinus" when downloading from any Serinus series instrument. This will communicate with the instrument via the Advanced protocol. If using a network or serial connection, ensure that the Advanced protocol has also been selected on the instrument itself.
Time Zone	Set this to the time zone that the instrument is located in.
DST	Enable this option if you plan on changing the clock on the instrument with daylight savings. Leave this disabled if the clock does not shift during DST. The instrument will need to be adjusted manually for DST – it will not happen automatically.
Database Name	This is the name to be used for the table in the SQL database containing this station's data. It must be unique for each station.
Device ID	Enter the Serial ID of the instrument. If you are not using multidrop; this can be set to "0" or left blank.
Link Type	Select the type of connection used to connect to the instrument. Different properties will appear depending on the link type selected. Align these settings with those of the instrument.
Log Interval	This needs to be the same as the Data Log Interval setting on the instrument.

Note: The available fields for communication parameters will change when you change the link type. You will need to set the communication parameters that have been defined on the instrument.

- 5. Once the station has been created, save the station by clicking the Save shortcut icon or File→Save.
- 6. Click Acquire Configuration. This will probe the Serinus for a channel list. After a few seconds, the channel list should be visible in the Channels tab.

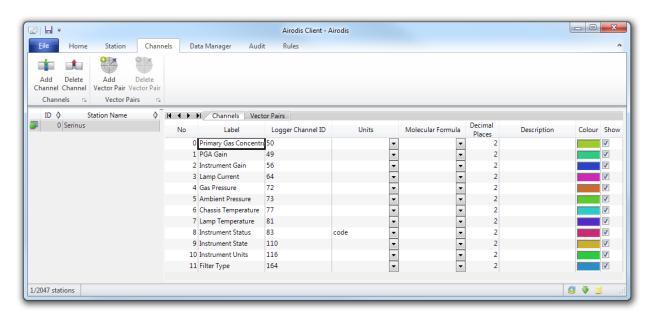


Figure 44 – Station Configuration (Channel List)

Note: If there was an error connecting to the Serinus, a red dot will appear next to its name in the station list. Hovering over the red dot will present you with an error message.

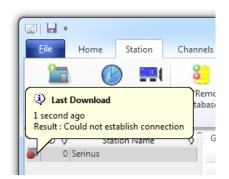


Figure 45 - Error Status Notification

7. Select the Data Manager tab, click download. The Download Data window will appear. Select the appropriate time period that you wish to download and click Download.

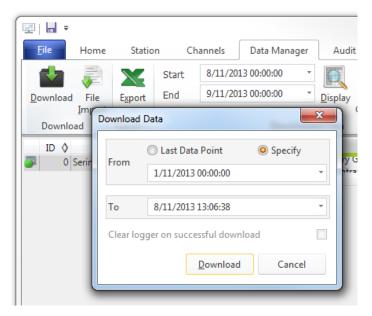


Figure 46 - Downloading Data

The status of the download will appear in the bottom-left corner of the window. You can also monitor the status of the download from the Home tab.

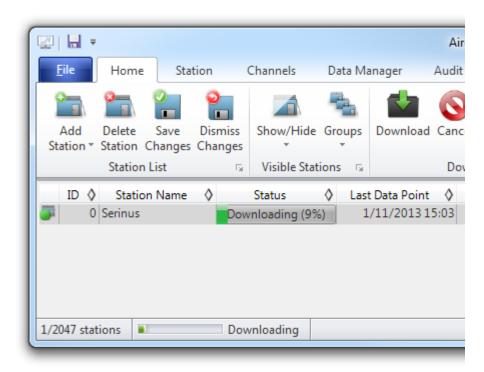


Figure 47 - Download Data Status

8. Data will become available in the data manager as it is downloaded. You can load data for a date range by entering the start and end dates and clicking Display. The selected data will be loaded into the data manager.

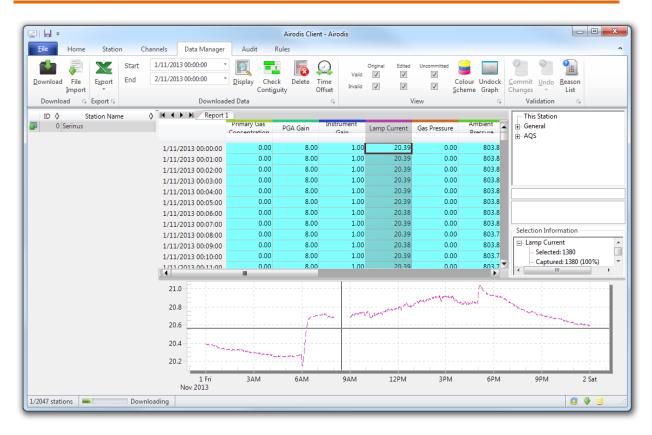


Figure 48 – Data Visibility

9. Data can be exported by clicking the Export function. This will allow you to save your data in CSV format, which can be loaded into another program such as Microsoft Excel. It is also possible to copy/paste (Ctrl + C / Ctrl + V) data directly from the Airodis data manager.

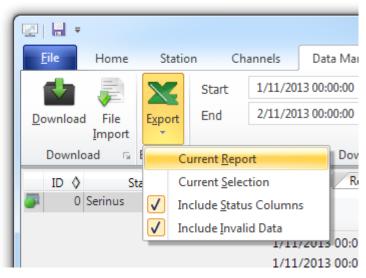


Figure 49 - Exporting Data

10. That's it! The data has been downloaded from the instrument and exported to a standard CSV file.

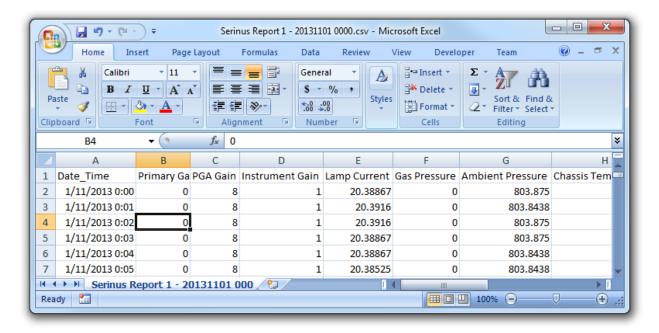


Figure 50 – Data Download Complete

4.7 Serinus Remote App/Bluetooth

The Serinus Remote Application allows for any Android device (Tablet or Smartphone) to connect to an instrument.

The Serinus Remote Application allows the user to:

- Completely control the instrument using a remote screen displayed on the device.
- Download logged data and take snapshots of all the instrument parameters.
- Construct graphs from logged data or real time measurements.

The following sections cover installation, connection and use of the application.

4.7.1 Installation

The Serinus Remote Application can be found in the Google Play Store by searching for Ecotech or Serinus. Once found, choose to Install the application and Open to start the application.

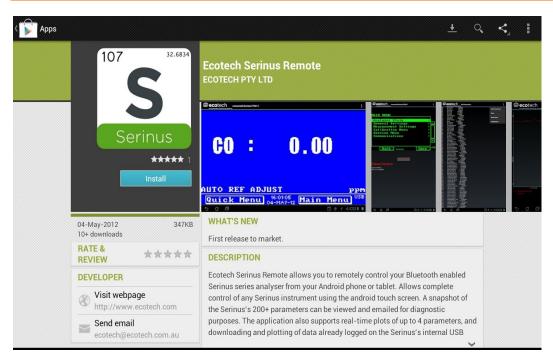


Figure 51 – Downloading the App from Google Play Store

Note: A menu containing additional features and functions can be accessed by entering the Options Menu (or similar) on your device. The location and format of this menu may vary.

4.7.2 Connecting to the Instrument

Procedure

- 1. Open Main Menu → Communications Menu → Bluetooth Menu (to find the Bluetooth ID and PIN) (refer to Section 3.5.41).
- 2. Touch the Scan Serinus Analysers button at the bottom of the screen.
- 3. Select the Analyser ID from either the Paired Devices or the Other Available.
- 4. Input the PIN (if prompted) and press OK (refer to Section 3.5.41).

Figure 52 – Bluetooth Pairing Request

5. A screen shot of the instrument's current screen should appear on your Smartphone or tablet. To disconnect press the back key/button on the device.

Note: Once the instrument has been paired with the device it will appear under "Paired Devices" and the PIN will not need to be entered again. Only one Bluetooth connection can be made to an instrument at any one time.

4.7.3 Control Serinus Instrument

Once connected the user has full control of the instrument. The range for remote control depends on the device's Bluetooth capabilities and any intervening obstructions, but is usually up to 30 meters.

Remote Screen Operation

With the exception of the number pad, all button functions/actions can be performed by touching the screen. This includes the selection buttons and the scroll buttons. Touching any part of the screen where there is not already a button also enacts the functions of the scroll buttons.

Home Screen

Touching the upper half of the screen increases the contrast and touching the lower half of the screen decreases contrast on the real instrument.

Menus

Touching the upper or lower half of the screen allows the user to scroll up and down respectively.

Right-hand Section of the Screen

Swiping from right to left brings up the number pad for entering numbers (swipe from left to right to hide the number pad).

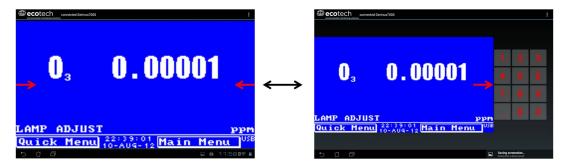


Figure 53 - Showing or Hiding the NumPad

Left-hand Section of the Screen

Swiping from left to right brings up a list of available analysers (swipe from right to left to hide the instrument list).

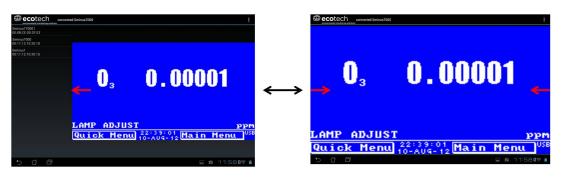


Figure 54 - Switching Analysis

Back Button

This button will enable you to return to the selection screen, allowing you to connect to a different instrument.

Options Menu

The Options Menu is accessed by the grey button in the top right corner of the screen or pressing the Menu Button, depending on your Android device.

Table 6 - Options Menu

Refresh	Refresh the display.
Show/Hide NumPad	Show or hide the number pad.
Real Time Plot	Refer to Section 4.7.4.
Download	Refer to Section 4.7.5.
Get Parameters	Refer to Section 4.7.6.
Preferences	Refer to Section 4.7.7.

4.7.4 Real-Time Plot

Allows the user to view real-time plotting of up to four parameters at the same time. The user can also scroll from left to right, top to bottom or zoom in and out on the plot by swiping/pinching.

Once the plot is zoomed or scrolled, it enters into Observer Mode, meaning that auto-scaling is suspended. Press at the top of the screen (where it says Observer Mode) to return to Normal Mode.

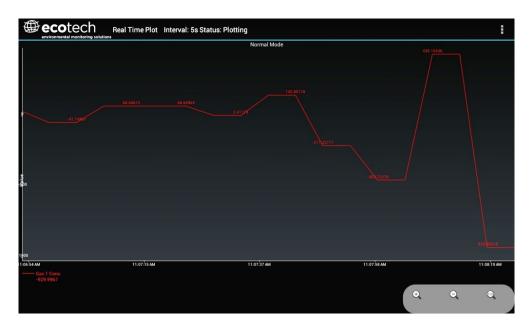


Figure 55 – Real-Time Plot

Options Menu

The Options Menu is accessed by the grey button in the top right corner of the screen or pressing the menu button, depending on your Android device.

Start	Restarts graphing if it has been stopped and returns the graph to Normal Mode.
Stop	Stops collecting data. In this mode you can scroll the display without going into Observer Mode, because the system has no data collection to suspend. It is necessary to "Stop" data collection to set the interval.
Clear	Clears the window and restarts the graphing.
Save	Saves an image of the graph and accompanying data in the location specified in preferences (refer to Section 4.7.7). The user will also be asked whether they want to send the file and data via email. When saving the data, you can choose to Save All Data or Customise the length of the data by entering a time between five minutes and six hours. Only the data from the start of collection to that limit will be saved (although the plot will still appear exactly as it does on the screen).
Set Interval	While data collection is stopped, the user can specify the time intervals between collections.

4.7.5 Download

Download logged data from the USB memory stick inside the instrument. All data logged by the instrument to the USB memory stick over the period of time specified will be collected. Due to the slow connection speed of Bluetooth, this should only be used for relatively short sections of data. Downloading one days' worth of one-minute data is likely to take a couple of minutes.

Options Menu

Save	Generates a filename based on the start and end date/time specified. It saves the downloaded data in the location specified in preferences and asks to send the saved comma separated text file (.csv) as an attachment to an email. This file format does not include the parameter headings, just the values.
Send E-Mail	Sends an email with the parameter data in the body of the email, formatted as displayed (this includes the parameter name and the values).
Plot	Graphs the data that has been downloaded. The user is prompted to select which parameters to plot based on the parameters that were being logged (refer to Figure 56).
Preferences	Refer to Section 4.7.7.



Figure 56 - Plot of Downloaded Data

4.7.6 Get Parameters

Download a list of parameters and corresponding values directly from the instrument. This list of parameters is a snap shot of the current instrument state and is very helpful in diagnosing any problems with the instrument.

Options Menu

Get Parameters	Refreshes the parameter list display.
Save	Generates a filename from the current date and time, saves the parameter data in the location specified in preferences, and then asks to send the saved text file as an attachment to an email.
Send E-Mail	Sends an email with the parameter data in the body of the email, formatted as displayed.
Preferences	Refer to Section 4.7.7.

4.7.7 Preferences

The Preferences Menu allows the operator to adjust the directory settings, logged data format and the colour scheme settings. It can be accessed through the Options Menu in most windows.

Directory Settings

The operator can specify/select where to save the parameter lists, logged data and real time plots.

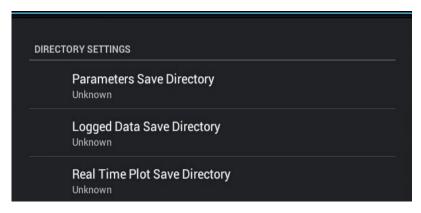


Figure 57 - Directory Settings

Logs Format

When downloading logged data, the parameters can be displayed on one line or each parameter on a separate line.

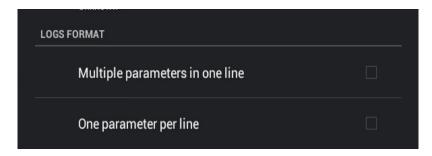


Figure 58 – Logs Format

Colour Theme Settings

Allows the user to choose a colour scheme for the remote screen, either Matrix, Classic, Emacs or Custom.

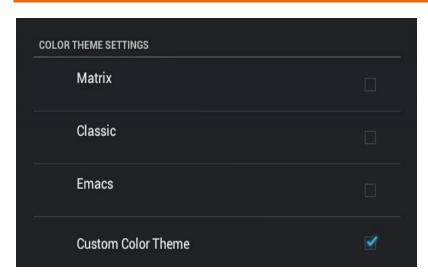


Figure 59 – Colour Theme Settings

This page is intentionally blank

5. Calibration

The following sections will cover how to calibrate the MFC's, ozone flow, pressure, ozone generator and photometer.

5.1 MFC Calibration

It is generally not necessary to recalibrate the MFC within the Serinus Cal 300. The MFC function is to control the zero air flow keeping it constant. The actual accuracy of the flow set point is not critical to operation of this instrument. Flow stability & repeatability is most important.

If an application determines that it is necessary to re-calibrate the mass flow controllers within the Serinus Cal 300, please follow the below procedure.

In order to perform this task, you will require a flow device/s having an accuracy of equal to or better than 1% of the device under test and must be currently certified.

Equipment Required

- A certified mass flow measurement device OR
- A certified volumetric flow measurement device/s in conjunction with a certified temperature probe and barometer

Note: The measurement devices range must match the range of the Serinus Cal MFC you are calibrating. Typical setup is a Diluent MFC Range 0 – 5 slpm.

Procedure

Note: You can either, connect another MFM (Mass Flow Meter) device to the Serinus Cal 300 set to 0 Deg C and 1013.25 mbar, **OR** if the measurement device is volumetric, measure the temperature and pressure of the gas stream to calculate the volumetric flow into mass flow. It is important to have stable ambient conditions when performing this calibration to ensure accurate and consistent results.

CAUTION

It is recommended that exhaust air is not expelled into a shelter/room inhabited by people. It should be expelled into the external air and away from the sample inlet.

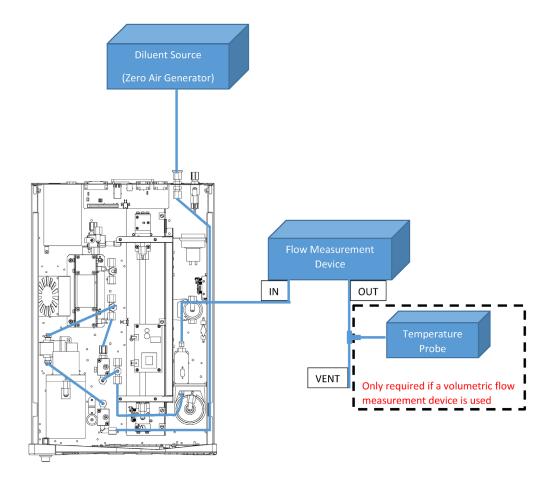


Figure 60 - MFC Calibration Setup

5.1.1 MFC Pre Calibration Setup

- 1. Backup settings and parameters to the internal USB memory stick (refer to Section 7.2).
- 2. Supply between 120 kPa 180 kPa of pressurised diluent air to the Ext. Diluent Port.
- 3. Open Quick Menu.
- 4. Disable Internal Diluent Disabled.

5.1.2 MFC Calibration

Before starting this procedure complete the MFC pre calibration setup (refer to Section 5.1.1). If at any point during the calibration you make a mistake or wish to abort, press cancel to prevent any changes.

- 1. Open Main Menu → Calibration Menu → MFC Calibration Menu.
- 2. Select **Standard Temperature** (select the standard temperature required for your region) Accept.
- 3. Confirm your flow measurement device is within the correct range for a 5 slpm MFC calibration.
- 4. Remove the top cover of the Serinus Cal 300.
- 5. Connect the flow measurement device directly to the output port of the MFC (refer to Figure 60).

- 6. Lightly place the top cover of the Serinus Cal 300 (over the tubing connection to MFC ensuring not to crush or restrict the tubing) to ensure a stable temperature. Allow 15 minutes for the Chassis Temperature to re-stabilize.
- 7. Edit Points (default is 10, but you can select from 5 to 10 calibration points) Accept.
- 8. Start **MFC Calibration** (follow the instructions, editing the displayed value to match your flow measurement device before accepting to start the next calibration point. Be sure to allow suitable stabilisation time, between points).

Note: If you are using a volumetric flow measuring device, you need to correct the reading for temperature and pressure before entering the final value into the Serinus Cal 300.

9. MFC Calibration is now complete. Remove the tubing connected to the MFC and replace the cover.

5.1.3 Readout Calibration

Before starting this procedure complete the MFC pre calibration setup (refer to Section 5.1.1).

- Open Main Menu → Calibration Menu → MFC Calibration Menu.
- 2. Select Standard Temperature (select the valid standard temperature for your region) Accept.
- 3. Edit Points (default is 10, but you can have from 5 to 10 calibration points) Accept.
- 4. Start **Readout Calibration** (allow the instrument to run the automated calibration, 10 seconds each step).

CAUTION

The Serinus Cal 300 MFC Readout Calibration will not work without a suitable diluent source connected to the instrument's diluent port.

5.2 Ozone Flow Calibration

It may be necessary occasionally to adjust the pressure regulator supplying diluent air to the Ozone Generator.

Equipment required

- A certified mass flow measurement device or a certified volumetric flow measurement device (corrected for temperature and pressure) able to measure from 0 200 sccm range.
 - If the volumetric flow device is programmable set flow settings to 0 Deg and 1013.25 mbar to standardise and match the Serinus Cal 300.

If it is not programmable you will also need a certified temperature probe and a pressure sensor to correct measurement readings to 0 Deg STP and 1013.25 mbar.

CAUTION

It is recommended that exhaust air is not expelled into a shelter/room inhabited by people. It should be expelled into the external air and away from the sample inlet.

Procedure

- 1. Supply between 120 kPa 180 kPa of pressurised diluent air to the Ext. Diluent Port.
- 2. Open Quick Menu.
- 3. Disable Internal Diluent Disabled.
- 4. Remove the top cover of the Serinus Cal 300.
- 5. Disconnect the tubing connected to the top of the Ozone Generator and connect your flow measurement device.

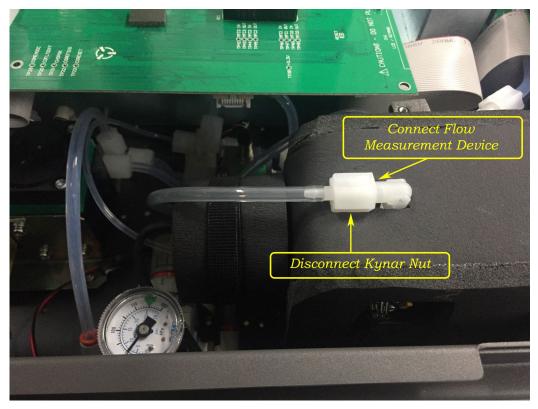


Figure 61 – Ozone Generator Flow Test Point

- 6. The calibration procedure consists of two flow points one at 80 sccm and one at 100 sccm.
- 7. Open Main Menu → Calibration Menu → Pressure Calibration Menu (read note) OK.

Note: This action will place the valve sequencing on hold; normal sampling will be interrupted.

- 8. Unlock the regulator adjustment knob by pulling up towards the shielded bench.
- 9. In the menu, select **O3 Flow**, then press Start.

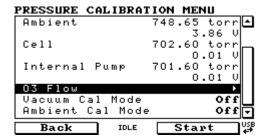


Figure 62 - Ozone Flow Calibration Start

10. Follow the instructions. Adjust the pressure regulator (turning the knob left or right to adjust flow) inside the Serinus Cal 300 until 80 ± 2 sccm is measured on your flow device). Once the flow is set, press OK.

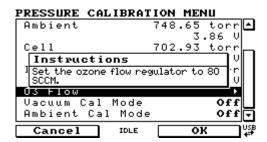


Figure 63 – Ozone Flow Calibration 80 sccm

11. Enter the actual mass flow as measured by your reference flow meter, then press Accept

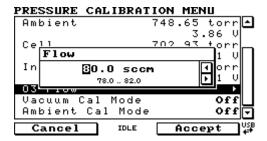


Figure 64 – Enter Ozone Flow 80 ± 2 sccm

12. The following screen will appear. Adjust the pressure regulator until 100 \pm 2 sccm is measured on your flow device, then press OK.

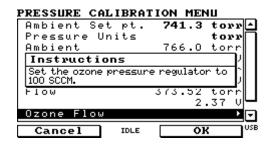


Figure 65 – Ozone Flow Calibration 100 sccm

13. The following screen will appear. Enter the actual mass flow as measured by your reference flow meter, then press Accept.

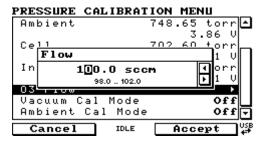


Figure 66 – Enter Ozone Flow 100 ± 2 sccm

- 14. Lock the pressure regulator by pushing the knob until it snaps back into place.
- 15. Disconnect the flow meter and reconnect the tubing to the top of the Ozone Generator.

Note: Running a point with higher total flow will result in a slightly lower O_3 flow and vice-versa. Given the way the O_3 output is calibrated, this is not a problem, but if it is desired to display 100sccm, the below final adjustment can be done.

- 16. Run a Zero point with the Output flow you typically use, with external plumbing connected as you usually use.
- 17. Check that the O3 flow displays 100 ± 2 sccm.
- 18. If necessary, adjust the regulator until the O3 flow displays 100 ± 2 sccm.
- 19. Replace the top cover of the Serinus Cal 300.
- 20. Ozone flow calibration complete.

5.3 Pressure Calibration

The pressure sensors are a vital component of the instrument operation and the pressure calibration should be checked on installation or whenever maintenance is performed.

A thorough leak check must be performed prior to performing a pressure calibration (refer to Section 6.3.1).

The pressure calibration can either be a two point calibration (one point under vacuum and the other at ambient pressure) or a single ambient point calibration when very minor adjustments are required.

Note: Ensure that the instrument has been running for at least one hour before any calibration is performed to ensure the instrument's stability. When performing a *two point pressure* calibration, it is advisable to perform the *vacuum pressure calibration* first.

Equipment Required

Barometer

Procedure

1. Open - Main Menu → Calibration Menu → Pressure Calibration Menu - (read note) - OK.

Note: This action will place the valve sequencing on hold; normal operation will be interrupted.

- 2. Edit Vacuum Set Pt. (read instructions) OK.
- 3. Disconnect all connections to the output ports and block ports 1, 2 and 3. Then connect a barometer to output port 4 (as seen in Figure 67).

Figure 67 - Connecting the Barometer to O4 (Output 4)

Note: Ensure units of measure are the same on both the barometer and instrument.

- 4. Wait 2-5 minutes and ensure the pressure reading on the barometer has dropped and is stable.
- 5. Enter the barometer reading into the instrument Accept.
- 6. Read displayed instructions OK.
- 7. Disconnect the barometer from output port 4.
- 8. Wait 2-5 min, enter the ambient barometer reading into the instrument Accept.
- 9. Read displayed instructions OK.
- 10. Pressure calibration is now complete, reconnect the connections to the output ports.

Note: Both of the pressure sensors should now be displaying the current ambient pressure and they should be the same value within 3 torr of each other.

11. Back - Pressure Calibration Menu - (read note) - OK.

5.4 Ozone Generator Characterisation

It may be necessary occasionally to adjust the ozone output characterisation on the Serinus Cal 300. This is typically performed after the ozone generator UV lamp has been replaced or if the ozone output has significantly drifted away from requested set point. This procedure is best carried out using the external diluent due to the duration of the procedure.

Note: This process will take at least 25 min and may take up to 5 hours.

Equipment Required

• (AIR) Diluent

Procedure

- 1. Supply between 120 kPa 180 kPa of pressurised diluent air to the Ext. Diluent Port.
- 2. Open Quick Menu.
- 3. Disable Internal Diluent Disabled.
- 4. Open Main Menu → Calibration Menu → Ozone Calibration Menu.
- 5. Edit Flow (Enter the flow you want the calibration to be performed at) Accept.
- 6. Edit Min Range (Enter the value for the lowest calibration point to be used when running the automated ozone calibration (run over 10 points spread between max and min)) Accept.
- 7. Edit Max Range (Enter the value for the highest calibration point to be used when running the automated ozone calibration (run over 10 points spread between max and min)) Accept.
- 8. Start **Ozone Calibration** (The firmware will now automatically step up through 10 points and adjust itself based on the internal photometer results).
- 9. The process is complete when no steps are displayed and the "Start" button option returns.

Note: Pressing Stop or terminating the O3 Gen/Photometer point will terminate the calibration without saving any changes.

5.5 Photometer Calibration

5.5.1 Photometer Pre-Check

Note: Both your Serinus Cal 300 and the external transfer standard should be powered up and active for a minimum of 2 hours.

Equipment required

- · External ozone transfer standard
- (Zero Air) Diluent

Procedure

- 1. Supply between 120 kPa 180 kPa of pressurised diluent air to the Ext. Diluent Port.
- 2. Open Quick Menu.
- 3. Disable Internal Diluent Disabled.
- 4. Connect an external ozone transfer standard to one of the ports on the output manifold (if the external ozone transfer standard requires external reference air ensure it is connected to the same diluent air source used by the Serinus Cal 300).
- 5. Create and run an **O3 Gen/Photometer** point at 100 % of range (normally 500 or 1000 ppb). Refer Section 3.2.2.3.
- 6. If the ozone measured on the Serinus Cal 300 is outside ± 2 % of the transfer standard then an adjustment will need to be made.

5.5.2 Photometer Calibration

Note: Both your Serinus Cal 300 and the external transfer standard should be powered up and active for a minimum of 2 hours.

Equipment required

- · External ozone transfer standard
- (AIR) Diluent

Procedure

- Supply between 120 kPa 180 kPa of pressurised diluent air to the Ext. Diluent Port.
- 2. Open Quick Menu.
- Disable Internal Diluent Disabled.
- 4. Connect an external ozone transfer standard to one of the ports on the output manifold (if the external ozone transfer standard requires external reference air ensure it is connected to the same diluent air source used by the Serinus Cal 300).
- 5. Create and run **O3 Gen/Photometer** point at 100 % of range (normally 500 or 1000 ppb) refer to Section 3.2.2.3.
- 6. Open Main Menu → Calibration Menu.
- 7. Let the instrument stabilise, minimum 60 minutes.
- 8. Enter Span Calibrate O3 (Enter the reading from the transfer standard) Accept.

5.6 Photometer Audit With External Ozone Source

Note: Both the Serinus Cal 300 and the external O₃ transfer standard should be powered up and active for a minimum of 2 hours.

Audit mode provides a method for external audits of the photometer. The point is then forced into a Zero point (if it isn't already), even if the unit was previously in Idle. While running this point, the MFCs are locked closed and their flow alarms are supressed. The new status condition "Audit Mode" will be triggered, forcing a yellow warning light. Otherwise the point runs as normal.

Equipment required

- · External ozone generator transfer standard
- (Zero Air) Diluent
- ¼" Kynar plugs

Procedure

- 1. Ensure the Serinus Cal 300 is warmed up and out of startup.
- 2. Supply between 120 kPa 180 kPa of pressurised diluent air to the Ext. Diluent Port. Pressurised dilution air must be sourced from the same stream as used by the external ozone generator.

- 3. Open Quick Menu.
- 4. Disable Internal Diluent Disabled.
- 5. Return to the **Home Screen** (the user can press the bottom status light (green).
- 6. Open Main Menu → Calibration Menu.
- 7. On **Audit Mode** On (the warning message "Connect external ozone generator." will appear) OK.
- 8. Return to the **Home Screen** (the user can press the bottom status light (green).
- 9. Connect an external ozone generator transfer standard to port "O4" on the output manifold (ensure the external ozone generator transfer standard external reference air is sourced from the same stream as used by the Serinus Cal 300 diluent air source).
- 10. Block output ports "O3" and "O2" on the output manifold. The last output "O1" becomes the vent for the excess ozone generated from the external ozone generator transfer standard.
- 11. Using the external ozone generator, generate a point of ozone, 500 or 1000 ppb @ one litre output. Allow the instrument time to stabilise, minimum 60 minutes.
- 12. Compare the external ozone generator transfer standard against the ozone concentration displayed on the home screen.
- 13. If desired, change Ozone concentration on the external ozone generator, reallow stabilization period and then compare / record the results.

6. Service

6.1 Maintenance Tools

To perform general maintenance on the Serinus Cal 300 the user may require the following equipment.

- Customizable Test Equipment Case
- Digital Multimeter & Leads (DMM)
- Barometer
- Thermometer & Probe
- Flow Meter (Select Range) Range: 50 sccm to 5000 sccm
- Minifit Extraction Tool
- Orifice Removal Tool
- Valve Driver Tool
- Leak Test Jig
- Computer and Connection Cable for Diagnostic Tests
- Assortment of 1/4" and 1/8" Tubing and Fittings

PN: H070301

PN: E031081 & E031082

PN: E031080

PN: E031078 & E031079

PN: ZBI-200-220M

PN: T030001

PN: H010046

PN: T030014

PN: H050069

Figure 68 - Minifit Extraction Tool - (PN: T030001)

Figure 69 – Orifice Removal Tool – (PN: H010046)

Figure 70 - Valve Driver Tool - (PN: T030014)

Figure 71 – Leak Check Jig – (PN: H050069)

Figure 72 – Air Monitoring Test Equipment Kit (AMTEK) – Customisable

6.2 Maintenance Schedule

The Serinus Cal 300 requires minimal ongoing maintenance. The intervals for calibration are determined by compliance standards that vary in different countries. The following is recommended by Ecotech as a guide and compliance with local regulatory or international standards is the responsibility of the user.

Table 7 - Maintenance Schedule

Frequency	Maintenance Tasks
Monthly	Check Status Menu and all parameters PASS/Ok. Backup configuration files to USB.
	UV Lamp check. Input Pot nominal value less than 255 otherwise replace lamp.
6 Monthly	MFC Multipoint Calibration
	Photometer Calibration – Transfer Standard (Portable)
Yearly	Ozone Flow Calibration

6.3 Maintenance Procedures

6.3.1 Leak Check

A Leak check is recommended when any service or repair of the internal valves or pneumatics has been performed or a leak is suspected.

Equipment required

- Vacuum leak test device (Ecotech Leak Jig PN: H050069)
- Assorted plugs and tubing supplied with instrument (Serinus Accessories Kit PN: H010136)

6.3.1.1 Leak Check - Full

Procedure

- 1. With the instrument powered on set the operation Mode to IDLE and remove lid.
- 2. Plug all the output ports (O1 O4) and the Ext. Diluent port with the provided Kynar plugs.
- 3. Locate the reference air vent tube and block as seen in Figure 73.

Figure 73 – Blocking Reference Air Vent

4. Disconnect the tubing as marked by the red circles in Figure 74. Connect a piece of bypass tubing between the tee and the diluent valve manifold as shown in Figure 74. The pressure regulator has an internal bleed valve and your leak test **will not work** if the pressure regulator is not isolated.

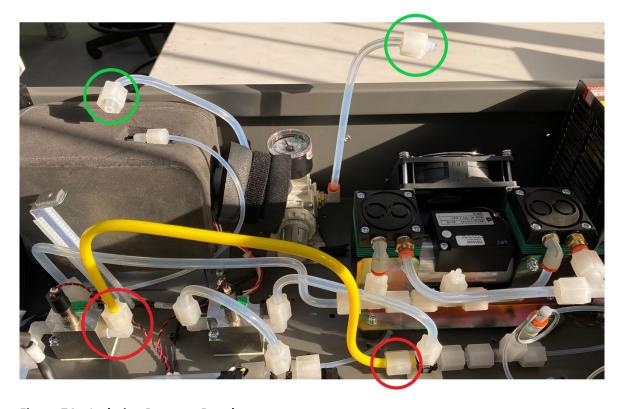


Figure 74 – Isolating Pressure Regulator

- 5. Open Main Menu → Service Menu → Diagnostics Menu → Valve Menu.
- 6. Disable Valve Sequencing Disabled.
- 7. Turn off all valves.



Figure 75 – Leak Check: Full Test

- 8. Open Main Menu → Analyser State Menu → Pressure & Flow Menu.
- 9. Check that all three pressures match and are at ambient. If they do not match within 3 torr then a pressure calibration is required.

Serinus Cal 300 - OZONE TRANSFER STANDARD

Figure 76 – Leak Check: 1A (Photometer + Gas Delivery + Ext. Diluent + Ref. Air)

- 10. Open Main Menu → Service Menu → Diagnostics Menu → Internal Pump Menu
 - a. Select Pump Control Manual Accept
 - b. On Internal Pump On
 - c. Edit Coarse 240
- 11. Wait 3 min with the internal pump running then turn the stop valve (90 degrees) marked as "D" on Figure 76.
- 12. Off Internal Pump Off.
- 13. Open Main Menu → Analyser State Menu → Pressure & Flow Menu.

- 14. Record the Cell pressure, wait 5 minutes, then record the Cell pressure again. It should not drop more than 2 kPa.
- If the leak test passes the leak test is complete for section 1A (photometer + gas delivery + ext. diluent + ref. air).
- If the leak check fails continue to 6.3.1.2.
- 15. Slowly remove the blocker on the Ext. Diluent port allowing the instrument to return to ambient pressure.
- 16. Disconnect the tubing as marked by the red circles in Figure 77. Connect a piece of bypass tubing with some unions to join the two pieces of tubing together, bypassing the internal diluent pump. The internal diluent pump has a pressure relief valve and your leak test **will not work** if the internal diluent pump is not isolated.

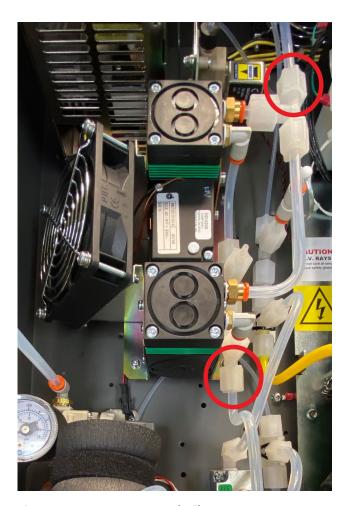


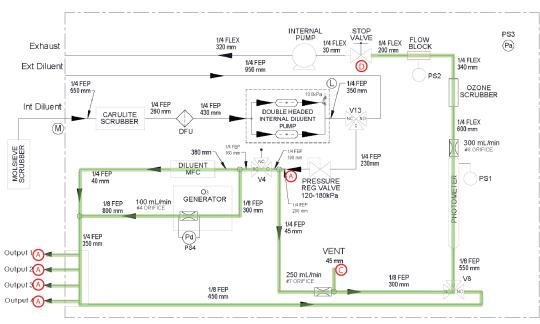
Figure 77 – Bypass Internal Diluent Pump

- 17. Open Main Menu → Service Menu → Diagnostics Menu → Valve Menu.
- 18. Turn on valve 13 internal diluent (V13).
- 19. Place a blocker on the Int. Diluent port or the end of the Molsieve scrubber if connected.

PS3 1/4 FLEX FLOW 200 mm BLOCK 1/4 FLEX 320 mm 1/4 FLEX 30 mm Pa Exhaust 1/4 FEP 950 mm 0 Ext Diluent PS2 1/4 FEP 350 mm 1/4 FEP 550 mm ⑱ OZONE SCRUBBER Int Diluent V13 1/4 FLEX 600 mm (M) DFU 300 mL/min 1/4 FEP 230mm DILUENT MFC 1/4 FEF 40 mm PS1 PRESSURE REG VALVE 120-180kPa GENERATOR 100 mL/min 1/8 FEP 300 mm 1/8 FEP 200 mm (B) 1/4 FEP 45 mm 1/4 FEP 350 mm Pd VENT Output IA Output 2(A)= 250 mL/min 1/8 FEP 300 mm V/8 Output 3 1/8 FEP 450 mm Output (A)

Serinus Cal 300 - OZONE TRANSFER STANDARD

Figure 78 - Leak Check: 1B (Photometer + Gas Delivery + Int. Diluent + Ref. Air)


- 20. Open Main Menu → Service Menu → Diagnostics Menu → Internal Pump Menu
 - a. Select Pump Control Manual Accept
 - b. On Internal Pump On
 - c. Edit Coarse 240
- 21. Wait 3 min with the internal pump running then turn the stop valve (90 degrees).
- 22. Off Internal Pump Off.
- 23. Open Main Menu → Analyser State Menu → Pressure & Flow Menu.
- 24. Record the Cell pressure, wait 5 minutes, then record the Cell pressure again. It should not drop more than 2 kPa.
- If the leak test passes the leak test is complete for section 1B (photometer + gas delivery + int. diluent + ref. air).
- 25. Slowly remove the blocker on the Int. Diluent port allowing the instrument to return to ambient pressure.
- The full leak check is complete. Remove the blocker on the reference air vent (Figure 73) and remove the pressure regulator bypass and reconnect the tubes marked with green circles as seen in Figure 74. Enable **Valve Sequencing** and return operation mode to original state.
- If the leak check fails continue to 6.3.1.2.

6.3.1.2 Leak Check - Isolate Diluent

The following procedure assumes the user is continuing from the full leak check procedure.

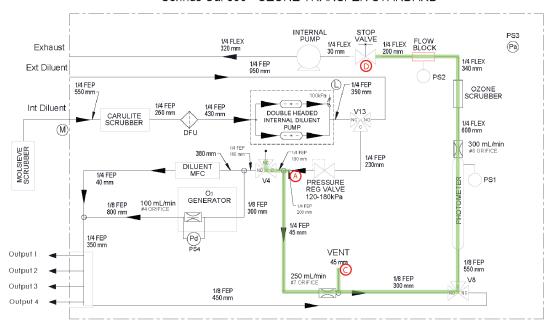
Procedure

1. Ensure all the section marked with an "A" are blocked with a blind nut and the reference vent marked with a "C" is blocked.

Serinus Cal 300 - OZONE TRANSFER STANDARD

Figure 79 - Leak Check: 2 (Photometer + Gas Delivery + Ref. Air)

- 2. Open Main Menu → Service Menu → Diagnostics Menu → Internal Pump Menu
 - a. Select Pump Control Manual Accept
 - b. On Internal Pump On
 - c. Edit Coarse 240
- 3. Wait 3 min with the internal pump running then turn the stop valve (90 degrees) marked as "D" on Figure 78.
- 4. Off Internal Pump Off.
- 5. Open Main Menu → Analyser State Menu → Pressure & Flow Menu.
- 6. Record the Cell pressure, wait 5 minutes, then record the Cell pressure again. It should not drop more than 2 kPa.
- If the leak check passes the leak test is complete for section 2 (photometer + gas delivery + ref. air). The leak is somewhere in the ext. diluent or int. diluent sections. Find and repair the leak then complete the full leak check again.
- If the leak check fails continue to 6.3.1.3.


6.3.1.3 Leak Check – Isolate Gas Delivery

The following procedure assumes the user is continuing from 6.3.1.2 Leak Check - Isolate Diluent procedure.

Procedure

- 1. Ensure all the section marked with an "A" are blocked with a blind nut and the reference vent marked with a "C" is blocked.
- 2. Open Main Menu → Service Menu → Diagnostics Menu → Valve Menu.
- 3. Turn on valve 4 audit valve (V4).

Serinus Cal 300 - OZONE TRANSFER STANDARD

Figure 80 - Leak Check: 3 (Photometer + Ref. Air)

- 4. Open Main Menu → Service Menu → Diagnostics Menu → Internal Pump Menu
 - a. Select Pump Control Manual Accept
 - b. On Internal Pump On
 - c. Edit Coarse 240
- 5. Wait 3 min with the internal pump running then turn the stop valve (90 degrees) marked as "D" on Figure 79.
- 6. Off Internal Pump Off.
- 7. Open Main Menu → Analyser State Menu → Pressure & Flow Menu.
- 8. Record the Cell pressure, wait 5 minutes, then record the Cell pressure again. It should not drop more than 2 kPa.
- If the leak check passes the leak test is complete for section 3 (photometer + ref. air). The leak is somewhere in the gas delivery section. Find and repair the leak then complete the full leak check again.
- If the leak check fails continue to 6.3.1.3.

6.3.1.4 Leak Check – Isolate Ref. Air

The following procedure assumes the user is continuing from 6.3.1.3 Leak Check – Isolate Gas Delivery procedure.

Procedure

- 1. Ensure all the section marked with an "A" are blocked with a blind nut.
- 2. Open Main Menu → Service Menu → Diagnostics Menu → Valve Menu.

Serinus Cal 300 - OZONE TRANSFER STANDARD PS3 1/4 FLEX 320 mm 1/4 FLEX 30 mm 1/4 FLEX FLOW 200 mm BLOCK Exhaust 1/4 FLEX 340 mm 1/4 FEP 950 mm 0 Ext Diluent OZONE SCRUBBER 1/4 FEP 430 mm Int Diluent 1/4 FEP 260 mm V13 DOUBLE HEADED INTERNAL DILUENT CARULITE 1/4 FLEX 600 mm PUMF 300 mL/min #8 ORIFICE SIEVE 1/4 FEP 230mm MOLS PS1 V4 PRESSURE REG VALVE 120-180kPa O3 GENERATOR 100 mL/min 1/4 FEP 1/4 FEP 45 mm (Pd) VENT Output IA 45 mm 1/8 FEP 550 mm 250 mL/min , V8 1/8 FEP 450 mm

3. Turn on valve 8 photometer valve (V4) and ensure Valve 4 audit valve is still on.

Figure 81 – Leak Check: 4 (Photometer + Gas Delivery)

- 4. Open Main Menu → Service Menu → Diagnostics Menu → Internal Pump Menu
 - a. Select Pump Control Manual Accept
 - b. On Internal Pump On
 - c. Edit Coarse 240
- 5. Wait 3 min with the internal pump running then turn the stop valve (90 degrees) marked as "D" on Figure 80.
- 6. Off Internal Pump Off.
- 7. Open Main Menu → Analyser State Menu → Pressure & Flow Menu.
- 8. Wait 5 minutes, observe the Cell pressure on the leak check jig, it should not drop more than 2 kPa
- If the leak check passes the leak test is complete for section 4 (photometer + gas delivery). The leak is somewhere in the ref. air section. Find and repair the leak then complete the full leak check again.
- If the leak check fails review the remaining section (photometer) find and repair the leak then complete the full leak check again.

6.3.2 Measurement UV Lamp

6.3.2.1 Measurement UV Lamp Check

The UV lamp intensity decreases over time, to compensate for this the instrument will increase the digital Input Pot. As the digital pot (Input Pot) approaches 255 the lamps intensity is decreasingly suitable for accurate measurement and the lamp should be replaced. A weak or noisy lamp may

cause noisy or erratic readings. However, it is recommended to check the pneumatics system i.e. leak check, flow checks and valve operation before changing the lamp.

6.3.2.2 Measurement UV Lamp Removal

Equipment required

1.5 mm Hex Key

Procedure

CAUTION

The UV Lamp operates from Hazardous Live Voltages. Be sure to turn the instrument power off during UV lamp replacement.

The UV Lamp emits harmful UV radiation. Be sure to turn the instrument power off during UV lamp replacement. Use UV protective eye were if it is necessary to observe if the lamp is operating correctly.

- 1. Turn the Serinus Cal 300 off.
- 2. Remove the lid of the Serinus Cal 300 (refer to Section 2.1.2).
- 3. Remove the thumb screws that secure the main controller PCA and raise the PCA until it's at a 90° angle. This will allow us to gain access to the shielded photometer.
- 4. Disconnect the two large ribbon cables on either side of the main controller PCA as well as all the connections to the rear panel PCA. Remove the top cover of the shielded photometer by loosening the five captive screws as seen in Figure 81.

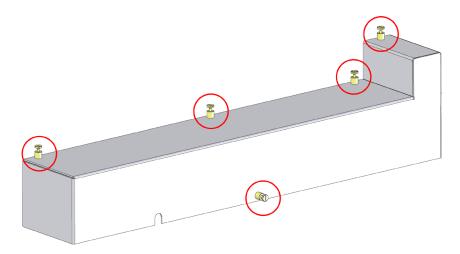


Figure 82 - Removing Shielded Photometer Top Cover

- 5. Lift out the top cover evenly.
- 6. Locate the UV lamp (refer to Figure 13) and disconnect the lamp from the lamp driver PCA (J1).
- 7. Remove the grub screw (1.5 mm hex key) from the hole in the left side of the block (refer to Figure 82) securing the UV lamp and slide the lamp out of the block.

Figure 83 - Location of UV Lamp Fastening Grub Screw

6.3.2.3 Measurement UV Lamp Installation

The following procedure assumes you have followed the procedure to remove the top cover and expose the internal components 6.3.2.2 preparing the shielded photometer for UV lamp replacement.

Equipment required

• 1.5 mm Hex Key

Procedure

CAUTION

The UV Lamp operates from Hazardous Live Voltages. Be sure to turn the instrument power off during UV lamp replacement.

CAUTION

The UV Lamp emits harmful UV radiation. Be sure to turn the instrument power off during UV lamp replacement. Use UV protective eye were if it is necessary to observe if the lamp is operating correctly.

- 1. Install a new lamp into the block taking care not to touch the lamp. Be sure to insert the lamp completely in the block to achieve maximum signal strength.
- 2. Gradually tighten the grub screw with the 1.5 mm hex key, until the lamp cannot move.

CAUTION

Be careful when securing lamp with grub screw not to tighten too much and damage the lamp.

- 3. Connect the UV lamp to the lamp driver PCA (J1).
- 4. Reconnect the two large ribbon cables on either side of the main controller PCA as well as all the connections to the rear panel PCA.
- 5. Turn on the Serinus Cal 300 and allow one hour to stabilise.
- 6. Open Main Menu → Service Menu → Diagnostics Menu → Digital Pots Menu.
- 7. Check that the **Lamp Current** is reading 10 mA.
- 8. Check that the **Input Pot** has reached its ideal target of between 50 to 120.

Note: If the Input Pot is below 50 than the UV lamp is too bright and will need to be detuned, If the Input Pot is greater than 120 than the UV lamp is too dull and will need to be tuned.

9. Perform a Photometer Calibration.

6.3.2.4 Measurement UV Lamp Tuning

The following procedure assumes you have followed the procedure to remove the top cover and expose the internal components as described in Section 6.3.2.2 Measurement UV Lamp Removal.

Equipment required

1.5 mm Hex Key

Procedure

CAUTION

The UV Lamp operates from Hazardous Live Voltages DON'T touch the Lamp Driver PCA while the power is ON.

The UV Lamp emits harmful UV radiation. Be sure to turn the instrument power off during UV lamp replacement. Use UV protective eye were if it is necessary to observe if the lamp is operating correctly.

- 1. Open Main Menu → Service Menu → Diagnostics Menu.
- 2. Disable Control Loop Disabled.
- 3. Open Digital Pots Menu.
- 4. Edit Input Pot (set the value to 50).
- 5. Loosen the grub screw that holds the UV lamp with the 1.5 mm Hex key.
- 6. Slowly turn the lamp from side to side until the Ref. Voltage reaches 3.0 V. If 3.0 volts can not be reached, increase the input pot (digital pot), keeping in mind upper limits previously mentioned.
- 7. Gradually tighten the grub screw with the 1.5 mm hex key, until the lamp cannot move.

CAUTION

Be careful when securing lamp with grub screw not to tighten too much and damage lamp.

- 8. Restart the instrument.
- 9. Wait for 1 hour for the calibrator to stabilise and confirm the Ref. Voltage is still 3.0 V.
- 10. Perform a Photometer Calibration.

Shielded Photometer Top Cover Replacement 6.3.2.5

The following procedure assumes you have followed the procedure to remove the top cover and expose the internal components as described in Section 6.3.2.2 Measurement UV Lamp Removal. We will now step through replacement of the shielded photometer top cover.

Equipment required

1.5 mm Hex Key

Procedure

CAUTION

The UV Lamp operates from Hazardous Live Voltages. Be sure to turn the instrument power off during UV lamp replacement.

CAUTION

The UV Lamp emits harmful UV radiation. Be sure to turn the instrument power off during UV lamp replacement. Use UV protective eye were if it is necessary to observe if the lamp is operating correctly.

- 1. Turn the Serinus Cal 300 off.
- 2. Disconnect the two large ribbon cables on either side of the Main controller PCA as well as all the connections to the Rear panel PCA.
- 3. Place down the shielded photometer top cover taking care to ensure all tubing and cables are clear.
- 4. Tighten the five captive screws as seen in Figure 81.
- 5. Connect the two large ribbon cables on either side of the Main controller PCA as well as all the connections to the Rear panel PCA.
- 6. Lower the main controller PCA and tighten the thumb screws that secure it to the PCB mount.
- 7. Replace the Serinus Cal 300 lid (refer to Section 2.1.2).

6.3.3 Cleaning

The instrument enclosure is made from aluminium and steel which are resistant to most forms of contamination. In order to keep the enclosure looking clean, use a microfiber cleaning cloth or a lightly dampened cloth. Be sure to turn the power off when doing so. The calibrator is not water proof so large volumes of water may damage the instrument.

6.4 Bootloader

The Serinus Bootloader is the initial set of operations that the instruments' microprocessor performs when first powered up (similar to the BIOS found in a personal computer). This occurs every time the instrument is powered up or during instrument resets. Once the instrument boots up, it will automatically load the instruments' firmware. A service technician may need to enter the Bootloader to perform advanced microprocessor functions as described in the following sections.

To enter the Bootloader, turn off the power to the instrument. Press and hold the plus key while turning the power on. Hold the Plus key until the following screen appears.

** Ecotech Serinus Cal **

V2.1 Bootloader

Press '1' to enter Bootloader

If the instrument displays the normal start up screen, the power will need to be toggled and another attempt will need to be made to enter the Bootloader. Once successful, press 1 on the keypad to enter the Bootloader Menu.

6.4.1 Display Help Screen

Once in the Bootloader screen it is possible to redisplay the help screen by pressing 1 on the keypad.

6.4.2 Communications Port Test

This test is very useful for fault finding communication issues. It allows a communication test to be carried out independent to any user settings or firmware revisions.

This command forces the following communication ports to output a string of characters: Serial Port RS232 #1, USB rear and Ethernet Port. The default baud rate is 38400 for the RS232 Serial Port. Initiate the test by pressing 2 on the keypad from the Bootloader screen.

6.4.3 Updating Firmware from USB Memory Stick

It is important for optimal performance of the instrument that the latest firmware is loaded. The latest firmware can be obtained by visiting Ecotech's website:

http://www.ecotech.com/downloads/firmware

Or by emailing Ecotech at service@ecotech.com or support@ecotech.com

To update the firmware from a USB memory stick, use the following procedure:

USB Memory Stick Update

- 1. Turn the instrument off.
- 2. Place the USB memory stick with the new firmware (ensure that firmware is placed in a folder called FIRMWARE) in the front panel USB Port.
- 3. Enter the Bootloader (refer to Section 6.4).
- 4. Select option 3 (upgrade from USB memory stick), press 3 on the keypad.
- 5. Wait until the upgrade has completed.
- 6. Depending on bootloader version, the firmware may run automatically, or the user may need to Press 9 on the keypad to start the instrument with new firmware.

6.4.4 Erase All Settings

This command is only required if the instrument's firmware has become unstable due to corrupted settings. To execute this command, enter the Bootloader Menu (refer to Section 6.4) and press 4 on the keypad.

6.4.5 Start Calibrator

The start analyser command will simply initiate a firmware load by pressing 9 on the keypad from the **Bootloader Menu.** It is generally used after a firmware upgrade.

This page is intentionally blank

7. Troubleshooting

7.1 Main Screen Error Messages

In the event of an instrument fault an error message will be displayed on the lower left corner of the home screen. It will also be logged on the internal USB memory stick as an event in the "Event Log".

In addition, the green status led will change to orange or red.

- A red light indicates that the instrument has a major failure and is not functioning.
- An orange light indicates there is a minor problem with the instrument, but the instrument may still operate reliably.
- A green light indicates that the instrument is working and there are no problems.

To determine which component/s of the instrument is causing a fault you can press the orange or red button to display a complete list of all current errors and warnings.

You can also find the complete list of self-diagnostic checks at;

Main Menu → Analyser State Menu → Status Menu

Refer to Section 3.5.13 of this manual has a complete table and explanation of all fault conditions. If you need further assistance please backup your instrument files to a USB memory stick and contact Ecotech Service Support.

7.2 Ecotech Service Support Files

Regular backup of the settings, parameters and data on the instruments USB memory stick is recommended.

In the event of a fault that requires Ecotech technical support, please make copies of the following files and email to: **support@ecotech.com**

Equipment Required

PC/Laptop

Procedure

State the ID number, model, board revision and firmware version of the instrument with a brief description of the problem. Take a copy of the current configuration if possible and a save of the parameters.

- Open Main Menu → Analyser State Menu.
- 2. **Model** (take note).
- 3. Ecotech ID (take note).
- 4. Board Revision (take note).
- 5. Firmware Ver. (take note).
- 6. Open Main Menu → Service Menu.
- 7. Save Save Configuration (CONFIG**.TXT) Accept.

Note: CONFIG99.TXT is the "Factory Backup" file, this is the configuration of the instrument as it left the factory. It is recommended that this file is kept unchanged but can be used as a reference backup point.

** Can be any number from 0 - 98.

- 8. Save Save Parameter List (PARAM**.TXT) Accept.
- 9. Eject Safely Remove USB Stick (Follow instructions).

Note: PARAM99.TXT is the "Factory Backup" file. This is a snap shot of the parameters while it was under test in the factory just prior to release. It is recommended that this file is kept unchanged but can be viewed for reference.

** Can be any number from 0 - 98.

1 4	16/07/2014 9:44 AM	File folder	
□ CONFIG	25/06/2014 11:51	File folder	
	25/06/2014 2:22 PM	File folder	
↓ LOG	25/06/2014 9:42 AM	File folder	
SanDiskSecureAccess	27/11/2012 4:40 PM	File folder	
SCRNDMP	26/06/2014 9:22 AM	File folder	
System Volume Information	25/06/2014 2:21 PM	File folder	
RunSanDiskSecureAccess_Win.exe	15/02/2012 1:39 AM	Application	29,987 KB

Figure 84 – USB Memory Stick File Structure

- 10. Insert the USB memory stick into your PC/Laptop computer and access the files.
- 11. Best practice is to email all the on the USB memory stick but if it's to large just send:
- 12. The CONFIG**.TXT and PARAM**.TXT files that are saved in the CONFIG folder.
- 13. The LOG files (Event Log text files) and data files (14=Year, Sub folder=month).
- 14. Safely Eject the USB from the PC/Laptop and return to the instrument.

8. Optional Extras

This section contains information on optional kits and installed options.

Rack Mount Kit	Refer to Section 8.1.
Network Port	Refer to Section 8.2.
Metric Fittings Kit	Refer to Section 8.3.

8.1 Rack Mount Kit (PN: E020116)

The rack mount kit is necessary for installing the Serinus into a 19" rack (the Serinus is 4RU in height).

Table 8 - Included Parts (Rack Mount Kit)

Description	Quantity	Part Number
Rack Slide Set	1	H010112
Rack Mount Adaptors	4	H010133
Rack Mount Ears	2	H010134
Spacers	4	HAR-8700
M6 x 20 Button Head Screws	8	
M6 Washers	16	
M6 Nyloc Nuts	8	
M4 x 10 Button Head Screws	18	
M4 Washers	8	
M4 Nyloc Nuts	8	
M6 Cage Nuts	8	

Installing the Instrument

- 1. Remove the rubber feet from the instrument (if attached).
- 2. Separate the slide rail assembly by pressing the black plastic clips in the slide rails to remove the inner section of the rail (refer to Figure 84).

Figure 85 – Separate Rack Slides

3. Attach the inner slide rails to each side of the instrument using M4 x 10 button screws; three on each side (refer to Figure 85).

Figure 86 – Assemble Inner Slide on Chassis

4. Install rack mount ears on the front of the instrument using two M4 x 10 screws on each side (refer to Figure 86).

Figure 87 - Rack Mount Ears Fitted to Instrument

5. Attach the rack mount adaptors to the ends of the outer slide rails using M4 x 10 button screws, washers and locknuts. Do not fully tighten at this stage as minor adjustments will be required to suit the length of the rack (refer to Figure 87).

Figure 88 – Attach Rack Mount Adaptors to Outer Slides

6. Test fit the rack slide into your rack to determine the spacing of the rack mount adaptors.

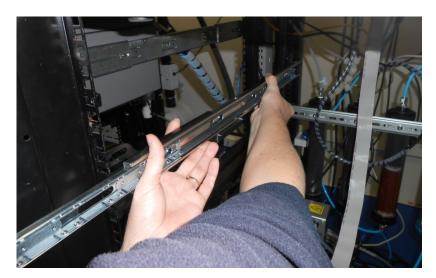


Figure 89 - Test Fit the Rack Slide Assembly into Your Rack

7. Install the two assembled outer slide rails onto the left and right side of the rack securely with M6 bolts; washer and locknuts/cage nuts (refer to Figure 89).

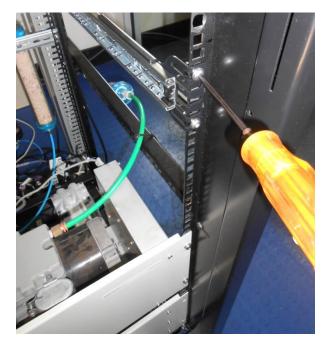


Figure 90 – Attach Slides to Front of Rack

8. Now carefully insert the instrument into the rack by fitting the instrument slides into the mounted rails. Ensuring that the rack slide locks engage on each side (you will hear a click from both sides).

CAUTION

When installing this instrument ensure that appropriate lifting equipment and procedures are followed. It is recommended that two people lift the instrument into the rack due to the weight, unless proper lifting equipment is available.

Note: Ensure both sides of the inner slide are attached to the outer slides before pushing into the rack fully.

9. Push the instrument into the rack. Adjust and tighten the screws as required to achieve a smooth and secure slide.

To Remove the Instrument

- 1. To remove the instrument first pull instrument forward of rack giving access to the slides.
- 2. Find the rack slide lock labelled **Push** and push it in whilst sliding the instrument out of the rack, complete this for both sides while carefully removing instrument.

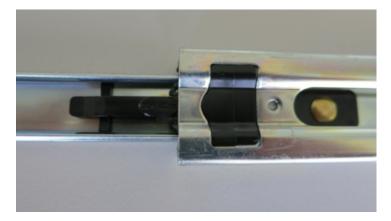


Figure 91 - Slide Clips

8.2 Network Port (PN: E020101)

The network port option allows the user to setup and connect to a range of TCP/IP network options. If you have this option installed you need to make sure it is enabled in the **Hardware Menu** before the feature can be used.

- Refer to Section 3.5.40, for details on the network menu.
- Refer to Section 4.3, for details on network setup.

8.2.1 Hardware Setup

This procedure will need to be followed after a factory reset.

Procedure

- 1. Press (the green instrument status light button), this will take you to the home screen.
- 2. Press (-99+) on the keypad. This will open the **Advanced Menu**.
- 3. Open Advanced Menu → Hardware Menu.
- 4. Enable Network Port → Enabled.

8.3 Metric Fittings Kit (PN: E020122)

The metric fittings kit allows the user to connect 6 mm tubing to the rear ports of the analyser. This can be very handy if it is hard to source $\frac{1}{4}$ " tubing from a local supplier.

This page is intentionally blank

9. Spare Parts and Schematics

9.1 Maintenance Kit (PN: E020325)

Routine maintenance parts that may be required.

Table 9 – Serinus Cal 300 Maintenance Kit (PN: E020325)

Description	Part Number
FILTER SINTERED SS	F010004
FILTER DFU 23 MICRON	F010005
SPRING, COMPRESSION, SS	H010062
O-RING, 1/2ID X 3/32W,	0010005
O-RING, 1/2ID X 1/16W,	0010008
O-RING, 0.114ID X 1/16W,	0010012
O-RING, 5/32ID X 1/16W,	0010013
O-RING .364ID X .07W SILICONE	0010024
O-RING .359ID X .139W SILICONE	0010025
O-RING 1.862ID X 0.103W,	0010030
O-RING, 7.5 X 1.0, VITON,	0010046
TUBING, 1/4 x 1/8,	T010026

9.2 Serinus Cal Service Kit (PN: E020320)

Assorted fittings, tubing and orifice removal tool useful when working on the instrument's internal pneumatics.

Table 10 - Serinus Accessories Kit

Part Description	Part Number
FITTING, KYNAR, UNION TEE, 1/8 BARB	F030007
FITTING, KYNAR, UNION ELBOW, 1/8 BARB	F030008
FITTING NUT 1/4T KYNAR DOUBLE PLASTIC FERRULE	F030024
FITTING, NUT 1/4T S/S	28800400-3
FITTING SWAGELOK FERRULE 1/4T S/S	28820400-3
FITTING NUT 1/4T KYNAR PLUG BLIND NUT	036-130440-2
FITTING, PLUG, 1/4T S/S	28840400-3
FITTING, CAP, 1/4T S/S	28860400-3
FITTING, PLUG, 1/8T S/S	28840200-3
FITTING, CAP, 1/8T S/S	28860200-3

Part Description	Part Number
ADAPTOR, 1/4" FITTING TO 1/8" BARB	H010007
ADAPTOR,1/4" TUBE TO 1/8" BARB	H010008
ORIFICE AND FILTER EXTRACTION TOOL	H010046
TYGON TUBING, 1/4 X 1/8 (3 FT)	T010011
TEFLON, TUBING, CLEAR 1/8 X 1/16 (1 MTR)	TUB-1000
BLACK RUBBER CAP, 1/8	H030003
FITTING KYNAR UNION TEE 1/8T	F030034-01

9.3 Consumables

Instrument components that will require replacement over the course of the instrument's lifespan.

Table 11 – Serinus Cal 300 Consumables

Part Description	Part Number	Replacement Lifespan Estimate*
ECOTECH TUBING, 25 FT LENGTH	T010026-01	Subject to use
UV LAMP ASSY, PHOTOMETER	C020077	2 Years+
UV LAMP ASSY, OZONE GENERATOR	C020124-50	2 Years+
SILICONE HEATSINK COMPOUND 50g	C050013	Subject to use
ORIFICE W/ O-RING GROOVE, 4MI	H010043-02	Subject to use
ORIFICE W/ O-RING GROOVE, 7MI	H010043-05	Subject to use
ORIFICE W/ O-RING GROOVE, 8MI	H010043-06	Subject to use
PUMP ASSY, SERINUS CAL	H010030	6 months+
REBUILD KIT, DIAPHRAGM PUMP, SUIT H010030	P031005	Replacement part
PUMP ASSY, INTERNAL DILUENT	H013200	1 year +
PUMP REBUILD KIT, TO SUIT H013200, VITON DIAPHRAGM	P031006	Replacement part
FILTER DFU 23 MICRON DIF-BN70	F010005	12 months+
OZONE SCRUBBER	H013120	2 Years+
CARULITE SCRUBBER - (scrubbing for internal diluent air)	H013145	Subject to use
CATALYST CARULITE, 1KG BOTTLE	C050008	Replacement media
SCRUBBER ASSY, MOLECULAR SIEVE W/ INDICATOR, COBALT FREE	H030510	Subject to use
MOLECULAR SIEVE 4A, 1KG BOTTLE	ECO-1036	Replacement media
SILICA GEL, SELF INDICATING, COBALT FREE, 500 GRAM BOTTLE	C050030-05	Replacement media

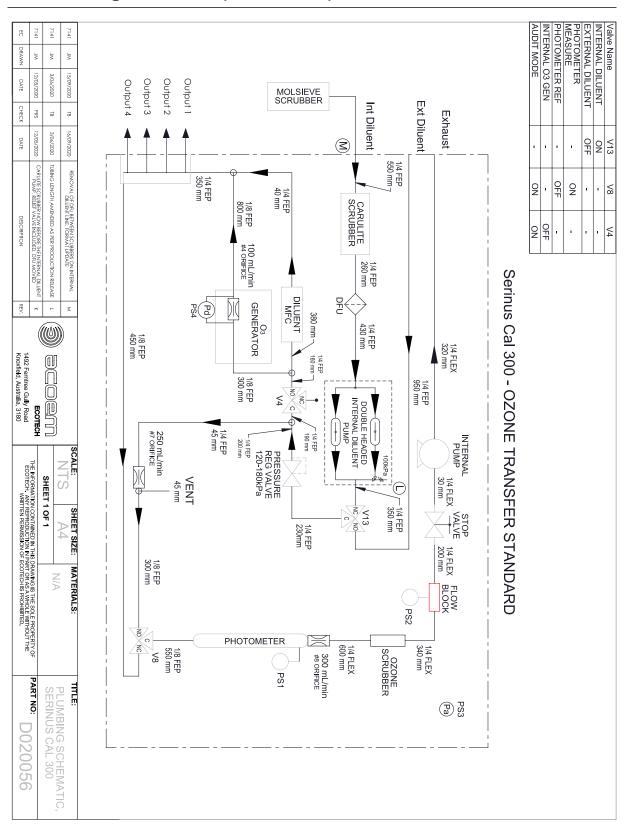
*Warranty Disclaimer: The product is subject to a warranty period on parts and labour from the date of shipment (the warranty period). The warranty period commences when the product is shipped from the factory. Lamps, fuses, batteries and consumable items are not covered by this warranty.

Subject to use refers to variable ambient conditions, toxic gases, dirt, extremes of temperature and moisture ingress may shorten the lifespan of components.

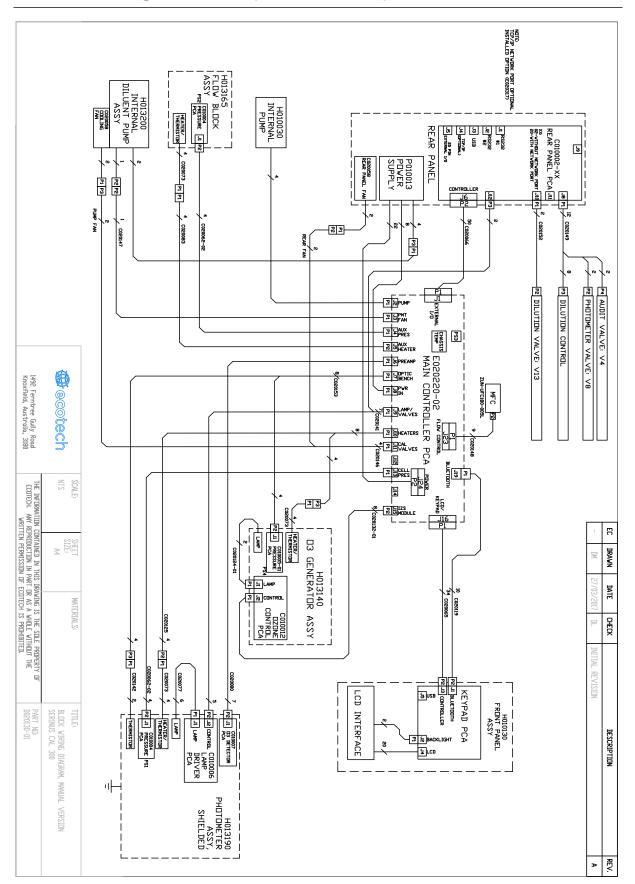
9.4 Instrument Parts List

List of Serinus Cal 300 components and part numbers for user reference.

Table 12 – Spare Parts List

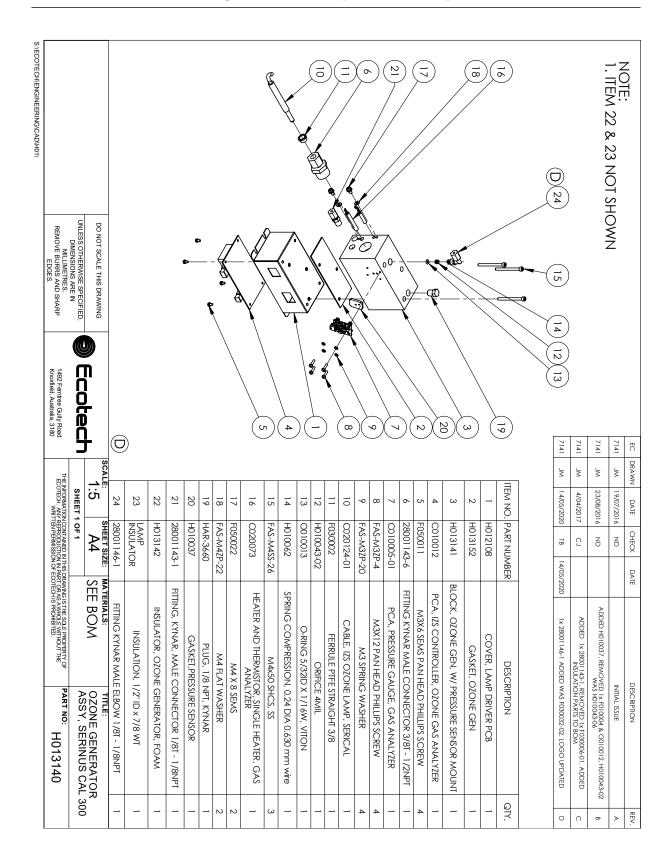

Part Description	Part Number
PCA, PRESSURE GAUGE - (used in H013165 and H013190)	C010004
PCA, PRESSURE DIFFERENTIAL - (used in H013140 ozone generator)	C010005-01
PCA, LAMP DRIVER GAS ANALYZER	C010006
PCA, OZONE DETECTOR	C010007
PCA, OZONE GENERATOR	C010012
PCA, MAIN CONTROLLER, CALIBRATOR	E020220-02
PCA, REAR PANEL, CALIBRATOR, STANDARD	C010002-02
PCA, REAR PANEL, CALIBRATOR, with NETWORK PORT	C010002-20
POWER SUPPLY	P010013
FRONT PANEL ASSEMBLY	H010130
OZONE SELECTIVE SCRUBBER - (to protect the internal photometer pump)	H013120
CARULITE SCRUBBER - (scrubbing ozone for internal diluent air)	H013145
O-RING 1.862ID X 0.103W - (used in H013145 Carulite scrubber)	0010030
OZONE GENERATOR ASSEMBLY	H013140
UV LAMP ASSEMBLY - (used in H013140 ozone generator)	C020124-50
GASKET, OZONE GENERATOR	H013152
REGULATOR, PRESSURE ASSEMBLY	R010002-50
SHIELDED PHOTOMETER ASSEMBLY,	H013190
UV LAMP ASSEMBLY - (used in H013190 shielded photometer)	C020077
SENSOR, PHTOTUBE, UV, R765-01 - (used in H013190 shielded photometer)	H013111-01
QUARTZ WINDOW 1/2 - (used in H013190 shielded photometer)	H013112
REACTION CELL TUBE - (used in H013190 shielded photometer)	H013113
FLOW BLOCK ASSEMBLY	H013165
THERMAL ISOLATOR, FLOW BLOCK	H010119
PUMP ASSEMBLY, VACUUM - (sample pump for the shielded photometer)	H010030
REBUILD KIT, DIAPHRAGM PUMP, SUIT H010030	P031005
MASS FLOW CONTROLLER - 5 SLPM	ZUN-UFC180-005L

Part Description	Part Number
GASKET, MASS FLOW CONTROLLER	HAR-6100
PUMP ASSEMBLY, INTERNAL DILUENT	H013200
RELIEF VALVE ASSY, 100kPa, IN BARB ADAPTOR (H010007) FITTING	H030174
PUMP REBUILD KIT, TO SUIT INTERNAL DILUENT PUMP	P031006
VALVE, 90 DEG TAP, POLY-CARB, WITH LUER CONNECTIONS	H030170
FAN,COOLING - (used on the rear panel)	C020058
HEATER AND THERMISTOR ASSEMBLY - (used in H013190, H013165 and H013140)	C020073
THERMISTOR ASSEMBLY - (used in H013190 shielded photometer)	C020142
MANIFOLD ASSEMBLY, OUTPUT - (rear panel output ports)	H013170-02
VALVE ASSY, OZONE SUITABLE, 1/8T FITTINGS, PHOTOMETER - (V8)	H013210
MANIFOLD ASSEMBLY, DILUENT - (V13)	H013180-02
FITTING, 1/8T - 1/4-28 UNF, INVERTED CONE TYPE (for V8 assy)	F030102
FERRULE, INVERTED CONE, SUIT 1/8 TUBING (for V8 assy)	F030103
MANIFOLD ASSEMBLY, AUDIT - (V4)	H013180-03
GASKET, MANIFOLD, INTERNAL	H013186
CABLE, PRESSURE	C020062-02
CABLE, DISPLAY	C020065
CABLE, EXTERNAL I/O	C020066
CABLE, PREAMP	C020080
CABLE, HEATER/THERMISTOR	C020083
CABLE, BLUETOOTH	C020119
CABLE, HEATER	C020125
CABLE, OZONE GEN CONTROL	C020132-01
CABLE, VALVE POWER/ LAMP DRIVER	C020141
CABLE, FAN POWER	C020146
CABLE, INTERNAL PUMP CONTROL	C020147
CABLE, MFC CONTROL	C020148
CABLE, VALVE POWER	C020149
CABLE, DILUENT VALVE	C020152
CABLE, OZONE FLOW/ PHOTOMETER	C020153
USB MEMORY STICK, ATLEAST 8 Gb	H030021
GASKET, PRESSURE SENSOR	H010037
VALVE, BULLET, 3 WAY	H010058
FITTING, MALE CONNECTOR, 1/8 BARB - 1/8NPT, 400 SERIES PVDF	F030006-01
FITTING, KYNAR, UNION TEE	F030007-01
FITTING KYNAR MALE CONNECTOR	F030020

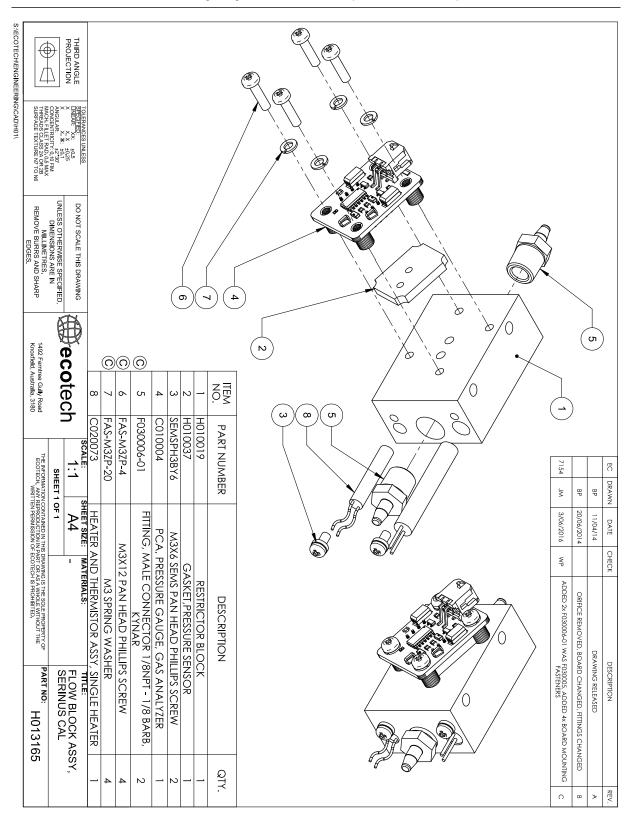

Part Description	Part Number
FITTING KYNAR BULKHEAD UNION	F030023
FERRULE PTFE STRAIGHT 1/4	F030028
FITTING NUT 1/4T STEEL GRIPPER	F030029
FITTING KYNAR UNION ELBOW	F030030
FERRULE, PTFE, REDUCING, 1/4-1/8	F030031
FITTING KYNAR MALE ELBOW	F030032-02
FITTING KYNAR UNION TEE	F030034-02
FITTING SMC MALE ELBOW	FIT-KQ2L07-01S
FITTING SMC MALE CONNECTOR 1/4T - 1/8BSPT	FIT-KQ2H07-01S
FITTING KYNAR MALE CONNECTOR	28001143-1
FITTING KYNAR MALE CONNECTOR	28001143-6
ADAPTOR, 1/4" FITTING TO 1/8" BARB	H010007
ADAPTOR, 1/4" TUBE TO 1/8" BARB	H010008
FERRULE PTFE STRAIGHT 3/8	F030002
PLUG KYNAR 1/8 NPT - (used in H013140 ozone generator)	HAR-3660
O-RING, 1/2ID X 3/32W - (used in H013190 shielded photometer)	O010005
O-RING, 1/2ID X 1/16W - (used in H013190 shielded photometer)	O010008
O-RING, 0.114ID X 1/16W - (used in H013190 and H013140)	O010012
O-RING, 5/32ID X 1/16W - (used in H013190 and H013140)	O010013
O-RING .364ID X .07W SILICONE - (used in H013190 shielded photometer)	0010024
O-RING .359ID X .139W SILICONE - (used in H013190 shielded photometer)	0010025
O-RING, 7.5 X 1.0, VITON - (used in H013180 and H013180-02)	O010046
TUBING, 1/4 x 1/8, FLEXIBLE SILICONE WITH PVDF LINING, PER FOOT	T010026
TUBING TEFLON 1/8 CLEAR	TUB-1000
TUBING TEFLON 1/4 THICK WALL	TUB-1003
SPRING, COMPRESSION, STAINLESS STEEL - (used in H013190 and H013140)	H010062
FILTER SINTERED, STAINLESS STEEL - (used in H013190 shielded photometer)	F010004
FILTER DFU 23 MICRON	F010005
ORIFICE W/O-RING GROOVE, 8ML - (used in H013190 shielded photometer)	H010043-06
ORIFICE W/O-RING GROOVE, 4ML - (used in H013140 ozone generator)	H010043-02
ORIFICE W/O-RING GROOVE, 7ML - (used in reference air tee)	H010043-05

9.5 Plumbing Schematic – (PN: D020056)

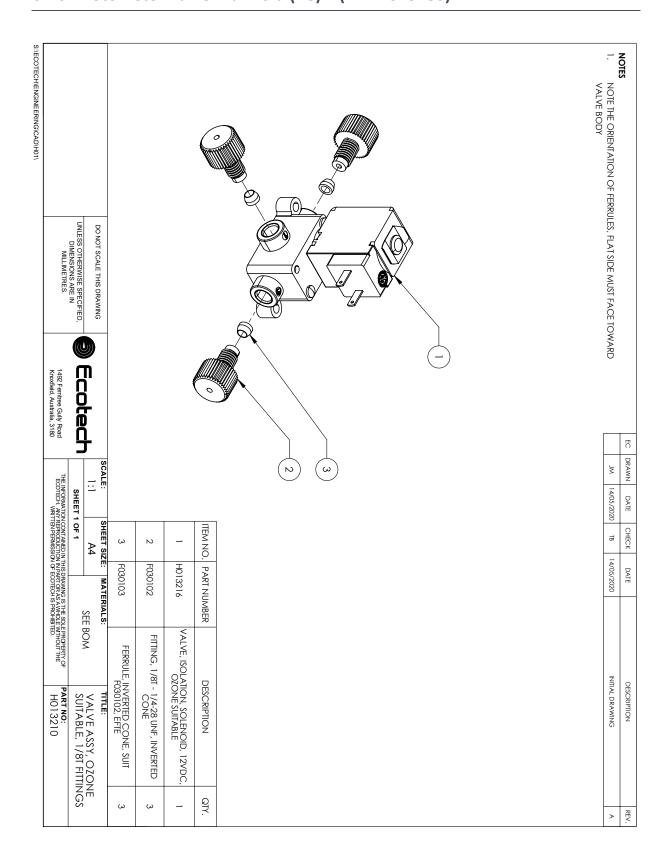
9.6 Block Wiring Schematic - (PN: D020130-01)



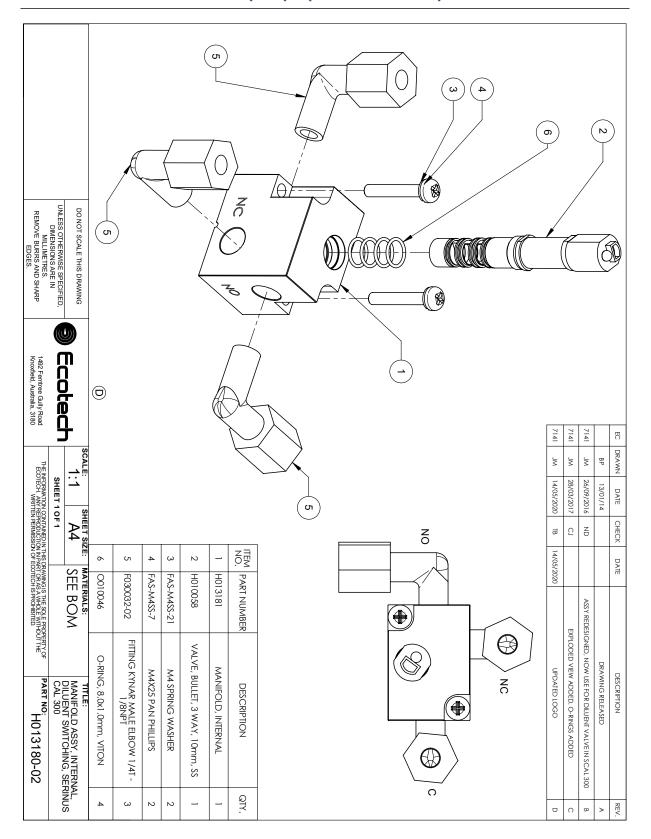
9.7 Shielded Photometer Assembly Exploded View – (PN: H013190)


							_	-	_						-	_	_	_	_				_		_	_	_	_		_	_	_								_	_				=
48	46	45	44		42	41	40	39	38	36	35	34	33	32	31	30	20	2 5	27	26	25	24		22	21	30 =	ī 0	5 5	17	16	1, 4	13	12	=	10	9	8	7	6			ω	2	_	TEM NO.
F030029	H010062	H013192	F050115	H030193	H030164	F050018	FAS-M3ZP-20	F050011	HU5UU28	FAS-M4SS-28	FAS-M4ZP-6	C020142	H013111	0010013	0010012	F010004	H01003/	0.00000	C020073	C020077	H013113	O010005	O010008	O010025	FAS-M4ZP-7	H013112	001000	HU10002	F030032-02	FAS-M47P-22	FAS A4 47B 21	C010006	C010004	H013194	H013193	H013103	C010007	H013107	H013108	H013102	H013106	H013105-01	H013104	H013191	PART NUMBER
FERRULE PTFE REDUCING 1/4-1/8	SPRING COMPRESSION, 0.24 DIA 0.630	COVER, OPTICAL BENCH, SHILDED	HEX SPACER, M3x40, BRASS NICKEL PLATED, FEMALE/FEMALE	GROMMET, 1/8"IDx 1-1/4"OD, NEOPRENE	ISOLATOR MOUNT, RUBBER, FEMALE TO FEMALE, M4, 15MM	M3X 10 SEMS PAN HEAD PHILLIPS SCREW	M3 SPRING WASHER	M3X6 SEMS PAN HEAD PHILLIPS SCREW	M4X40 FAN HEAD PHILLIPS SOBEW	M4X50 PAN HEAD PHILLIPS SCREW SS	M4 × 20, PAN PH, ZP	THERMISTOR ASSY ENCASEMENT	TUBE UV, R765-01 9810,9850	O-RING 5/32ID X 1/16W, VITON	O-RING 5/32ID X 1/16W, VITON	FILTER SINTERED SS	OBJET OF S MI	HEATER, GAS ANALYZER	HEATER AND THERMISTOR, SINGLE	LAMP, UV, OZONE GAS ANALYZER	REACTION CELL TUBE FIRE POLISH & ANNEAL ENDS	O-RING BS 112, SILICONE	O-RING, VITON	O-RING .359ID X .139W SILICONE	M4X25 PAN PHILLIPS	OHART WINDOW 1/2	O-BING 364ID X OZW SILICONE	ADABTOR 1/4" EITING TO 1/8" BABB	FITTING KYNAR MALE ELBOW 1/4T -	M4 FLAT WASHER	MAA SBBIND WASHER	PCA LAMP DRIVER GAS ANALYZER	PCA, PRESSURE GAUGE, GAS ANALYZER	ISOLATOR, MEASUREMENT CELL, LAMP END, O3	DETECTOR END, O3	HOUSING, SENSOR, OZONE	PCA OZONE DETECTOR GAS ANALYZER	COLLET, TUBE, OZONE CELL	COLLET, COVER, OZONE CELL	COVER, TUBE, OZONE CELL	MOUNTING BLOCK, LAMP, OZONE	MOUNTING BLOCK, SENSOR AND	MOUNTING BLOCK, LAMP AND OZONE	BASE, MEASUREMENT CELL, SHIELDED	DESCRIPTION
	_	_	4	2	4	œ	اء	Cı I	× N) (л	2	_	_	-	_	- -	- -		-	-	_	_	-	2	. ا 4		- -	- 1	2	3 3	3 0	-	1	_	-	-	_	_	-	-		-	-	_	QTY.
PROJECTION ANGLAY 275 PROJECTION ANGLAY 275 ANGLAY	_				44) (35) (15) (23) (6) (22)										42			\													\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				00-4		(a) (a) (b) (b) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	39 (34)1238 (12)16/32				7141	7141	7141	EC EC
T:5 A3 SHEET 1 OF 1 THE INFORMATION CONTAINED IN THIS DR ECOTICAL ANY REPRODUCTION IN PAR WATER PREMASSION OF EACH					38,40(12)28(2)(1)(19)(20)(4)									. /																							3 (29)				Jivi 12/00/2020	M 12/05/2020 AT 14/05/2020	JM 18/01/2019 VC FITTING NOW 28001146-1 WAS F030032-02.	JM 15/07/2016 ND INITIAL DRAWING	DRAWN DATE CHECK DATE DESCRIPTION

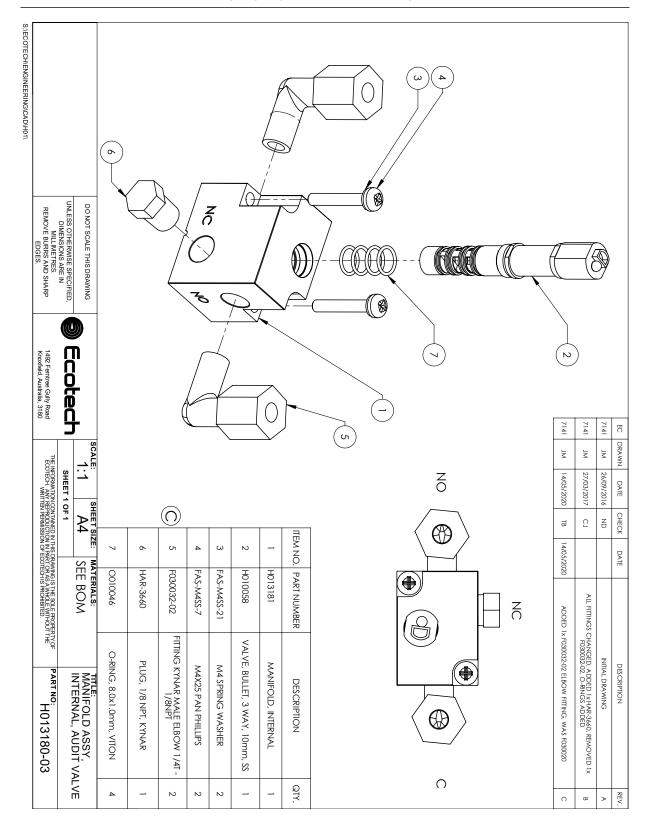
9.8 Ozone Generator Exploded View – (PN: H013140)



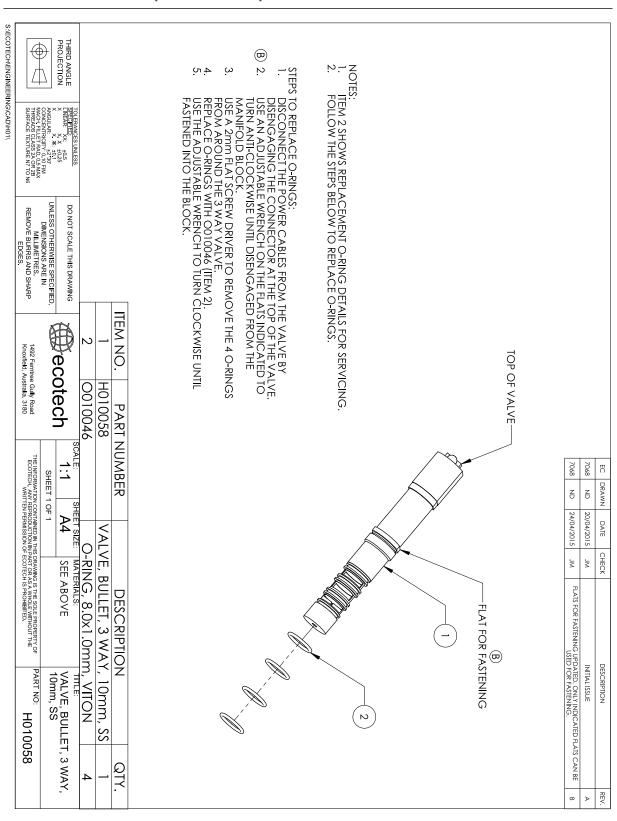
9.9 Flow Block Assembly Exploded View - (PN: H013165)



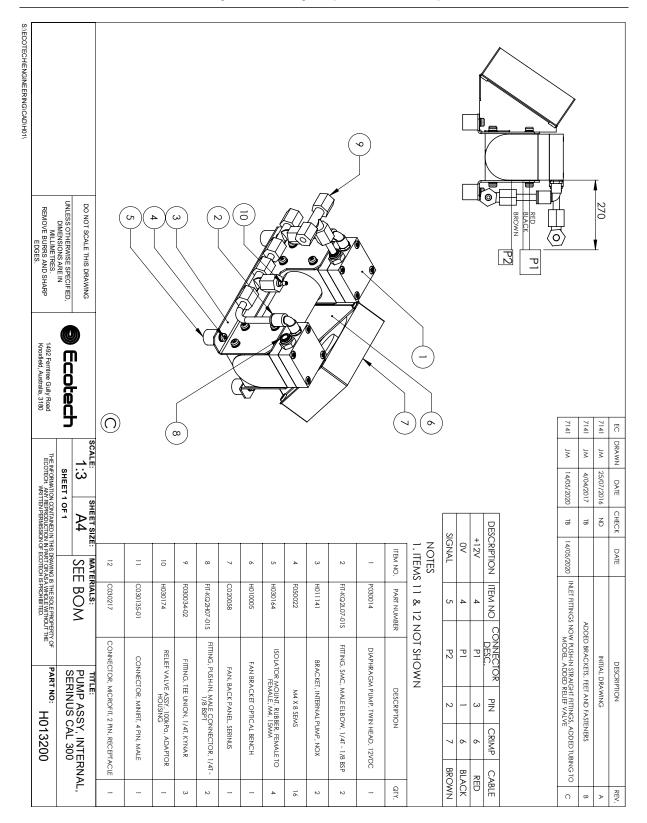
9.10 Photometer Valve Manifold (V8) - (PN: H013180)



9.11 Dilution Valve Manifold (V13) - (PN: H013180-02)



9.12 Audit Valve Manifold (V4) - (PN: H013180-03)



9.13 Bullet Valve - (PN: H010058)

9.14 Internal Diluent Pump Assembly - (PN: H013200)

This page is intentionally blank

Appendix A. Advanced Protocol

The Advanced protocol allows access to the full list of instrument parameters.

A.1 Command Format

All commands and responses sent to and from the Instrument will be in the following packet format to ensure data is reliable.

Table 13 - Packet Format

1	2	3	4	5	6 5+n	6+n	7+n
STX (2)	Serial ID	Command	ETX (3)	Message Length (n)	Message	Checksum	EOT (4)

Where:

<STX> ASCII Start of Text = 0x02 hex.

Serial ID The Serial ID assigned in the Main Menu → Communications Menu →

Serial Communication Menu.

 $\langle ETX \rangle$ ASCII End of Text = 0x03 hex.

Checksum The XOR of the individual bytes except for STX, ETX, EOT and

Checksum.

Message length Must be in the range 0 to 32. Responses from the instrument can have

a message Length of 0 to 255.

<EOT> ASCII End of Transmission = 0x04 hex.

Examples

A basic request for Primary gas data would be as follows:

Table 14 – Example: Primary Gas Request

Byte Number	1	2	3	4	5	6	7	8
Description	STX	ID	Command	ETX	Message Length	Primary Gas Conc	Checksum	ЕОТ
Value	2	0	1	3	1	50	50	4
Checksum Calculation		0	0⊕1=1		1⊕1=0	0⊕50=50	50	

And a sample response:

Table 15 – Example: Primary Gas Response

Byte Number	1	2	3	4	5	6	Continued in
Description	STX	ID	Command	ETX	Message Length	Primary Gas Conc	next table.
Value	2	0	1	3	5	50	
Checksum Calculation		0	0⊕1=1		1⊕5=4	4⊕50=54	

Table 16 – Example: Primary Gas Response (continued)

Byte Number	7	8	9	10	11	12
Description	IEEE represer	ntation of 1.00			Checksum	EOT
Value	63	128	0	0	50	4
Checksum Calculation	54⊕63=9	9⊕128=137	137⊕0=137	137⊕0=137	137	

A.2 Commands

A.2.1 Communication Error

Where:

Command byte 0

Message byte 1 0

Message byte 2 0..7

If the command byte of a response is 0, this indicates an error has occurred. The message field will be 2 bytes long, where the 2nd byte indicates the error according to the following table.

Table 17 - List of Errors

Error#	Description
0	Bad Checksum received
1	Invalid Parameter Length
2	Invalid Parameter
3	Internal Data Flash Erase in Progress unable to return data for a few seconds
4	Unsupported Command.
5	Another process is collecting data – unable to service request.
6	MemStick Not Connected
7	MemStick Busy

A.2.2 Get IEEE Value

Where:

Command byte 1

Message byte 1 Index from List of Parameters

Message byte 2..32 Additional indexes (optional)

This command requests the value of an instrument parameter. The message field byte contains the index of the parameter requested, as described in the List of Parameters.

Up to 32 indexes can be supplied in a single request. The response has 5 bytes for each parameter requested – the first byte is the parameter index and the next four are the IEEE representation of the current value.

Example

A request with a message field of 50,51,52 to a Serinus S40 would return a 15 byte message as shown below:

Table 18 – Example: Get IEEE Response data

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
50 NO reading		51	NOx re	ading			52	NO2 re	ading					

A.2.3 Set Calibration Mode

Where:

Command byte 4

Message byte 1 85

Message byte 2-5 The IEEE representation of 0, 1, 2, or 3

0 puts the instrument into Measure mode (0,0,0,0)

1 puts the instrument into Cycle mode (63,128,0,0)

2 puts the instrument into Zero mode (64,0,0,0)

3 puts the instrument into Span mode (64,64,0,0)

This command puts the instrument into a calibration mode (the same as going to the Calibration menu and choosing a Cal. Mode).

Example

A request with a command of 4 and a message field of 85,64,64,0,0 would place the instrument into Span mode.

A.2.4 Set Calibration

Enters a new calibration value: the same as entering Span Calibrate or Zero Calibrate on the calibration menu.

Where:

Command byte 18

Message byte 1 0, 1, 2, or 3 where

0 = Span

1 = Zero (first zero gas)

2 = Zero (second zero gas)

3 = Zero (Third zero gas)

Message byte 2-5 The IEEE representation of the calibration value.

A.2.5 Serinus Calibrator

The Serinus Cal command byte is 19. Each individual Serinus Cal operation is controlled by the first message byte (the sub-command). The corresponding byte value is indicated in parenthesis next to each sub-command name and listed as the first parameter byte value.

A.2.5.1 General Comments

All Serinus Calibrator commands use the following constants and formats.

A.2.5.1.1 Gas Index

Gasses are referred to by index. Whenever a command asks for a gas index, use the following values:

Table 19 - Gas Indexes

Gas		Index
Air	AIR	1
Ammonia	NH3	2
Butane	C4H10	3
Carbon Dioxide	CO2	4
Carbon Monoxide	со	5
Ethane	С2Н6	6
Helium	HE	7
Hydrogen Sufilde	H2S	8
Methane	CH4	9
Nitric Oxide	NO	10
Nitrogen	N2	11

Gas		Index
Nitrogen Dioxide	NO2	12
Oxygen	02	13
Ozone	О3	14
Propane	С3Н8	15
Sulfur Dioxide	SO2	16
Custom	User defined	17-26
Internal	Internal Air Source (if that option is installed)	27
External	External Air Source (only applies to a 3011)	28

A.2.5.1.2 Unit Index

Whenever a command asks for a unit index, use the following values:

Table 20 – Unit Indexes

Unit	Index
%	0
ppm	1
ppb	2
ppt	3

A.2.5.1.3 Port Index

Whenever a command asks for a port index, use the following values:

Table 21 – Port Indexes

Port	Index
None	0
Diluent 1	1
Diluent 2	2
Source 1	3
Source 2	4
Source 3	5
Source 4	6
Source 5	7
Source 6	8
Source 7	9
Source 8	10

A.2.5.1.4 IEEE

Any value marked IEEE is a standard IEEE 4-byte representation of a floating point value.

A.2.5.1.5 Reading and Writing Values

Refer to the – Advanced Protocol Parameter List, Table 37, for details on which values can be read and set via GetIEEEValue and SetIEEEValue.

A.2.5.2Sub Commands

Each sub-command is detailed below.

A.2.5.2.1 Mode (1)

Sets the operational mode of the instrument. Used to start or stop points and sequences.

Table 22 – Mode Control

Parameter	Value	Byte
Sub-Command	1	1
Mode	03	2
Function	Varies	3*

* Conditional

The Mode is one of the following values.

0 = Stop

1 = Idle

2 = Point

3 = Sequence

Stop shuts down all operation and ignores both manual and DI input signals.

Idle stops the current point or sequence but allows manual and DI input signals.

Point runs a point. A point number between 0 and 32 must be supplied as the Function parameter; 0 is the manual point (normally a copy of the last point run).

Sequence runs a sequence. A sequence number between 1 and 16 must be supplied as the Function parameter.

A.2.5.2.2 Purge (2)

Controls the purge operation of the instrument.

Table 23 - Purge Control

Parameter	Value	Byte
Sub-Command	2	1
Operation	05	2
Purge Time	015	3*

* Conditional

The Operation is one of the following values.

- 0 = Stop
- 1 = Immediate
- 2 = Time
- 3 = Disable
- 4 = On Change
- 5 = On Start

Stop terminates a purge if one is occurring.

Immediate begins a purge immediately (the same as a manual purge).

Time is the number of seconds to do a purge. Setting this to 0 is the same as disabling the purge. The purge time value is in the Purge Time parameter (in seconds). Other modes do not accept a Purge Time parameter.

Disable stops the system from doing purges.

On Change means the system will purge when a point calls for a different gas standard.

On Start means the system will purge every time the system starts a point.

A.2.5.2.3 Port (3)

Define what standards and diluents are attached to the ports.

Table 24 - Port Definition

Parameter	Value	Byte
Sub-Command	3	1
Port Index	Port Index	2
Attachment	Gas Index or 110	3

The Port Index is the port to define the supply for.

Attachment is either the gas (for diluents) or the gas standard (for sources). Gas is specified by a Gas Index; the standard is numbered 1..10.

A.2.5.2.4 Standard (4)

Define a gas standard.

Table 25 – Gas Standard Definition

Parameter	Value	Byte
Command	4	1
Standard	110	2
Name	Text	3-8
Serial	Text	9-14
Expiry Day	131	15
Expiry Month	112	16
Expiry Year	063	17
Balance Gas	Gas Index	18
Gas 1	Gas Index	19
Units	Unit Index	20
Conc	IEEE	21-24
Gas 2*	Gas Index	25
Units*	Unit Index	26
Conc*	IEEE	27-30
Gas 3*	Gas Index	31
Units*	Unit Index	32
Conc*	IEEE	33-36
Gas 4*	Gas Index	37
Units*	Unit Index	38
Conc*	IEEE	39-42
Gas 5*	Gas Index	43
Units*	Unit Index	44
Conc*	IEEE	45-48
Gas 6*	Gas Index	49
Units*	Unit Index	50
Conc*	IEEE	51-54

* Optional

Standard is the index of the gas standard. Up to 10 can be defined.

Name is six ascii characters. If less than six are required, set the remaining characters to NULL (0).

Serial number is six ascii characters.

Expiry day, month, and year specify the expiry date. This has no effect on the firmware but is included for user records.

Balance Gas is the dominant gas in the standard.

Gas 1..6 are the gas names and concentrations (in ppm). Only the first gas must be defined; the rest are optional.

Units are the units the concentration value is expressed in. Thus, a standard that was 50% CO2 could be described as 4,0,50 or 4,1,500000.

Concentrations are in standard IEEE floating point format and limited to 0.0 to 100% (or 1,000,000 for ppm, etc.). Values below 0 will be clipped to 0 and above 100% will be clipped to 100%.

A.2.5.2.5 Point (5)

Define a point. Different types of points require different parameters; unused parameters should be set to zero in this command. For example, an O3 Generator point does not need a gas standard; thus, the six bytes of the Standard field should be set to 0. Refer to Define Point Menu, Section 3.5.6 to determine which fields are necessary for a given type of point.

A note on error conditions: when you define points from the instrument menu it does not allow you to select impossible levels of gas, ozone, or flow, or to select gasses that are not defined in the named standard. However, during remote operation none of these checks are applied. It is up to the user to define only valid points; any invalid points will generate an error condition when they are run.

Table 26 - Point Definition

Parameter	Range	Byte
Sub-Command	5	1
Point	032	2
Name	Text	3-8
Input Mask	0xFF	9
Input Pattern	0xFF	10
Output Mask	0xFF	11
Output Pattern	0xFF	12
Operation	05	13
Diluent	Gas Index	14
Standard	Text	15-20
Gas	Gas Index	21
Units	Unit Index	22
Gas Target	IEEE	23-26
Units	Unit Index	27
Ozone Target	IEEE	28-31
Flow	IEEE	32-35

Point is the index of the point. 0 is the "Manual" point and 1..32 are the named points. Note that the Manual point is overwritten whenever a named point is run.

Name is six ascii characters. If less than six are required, set the remaining characters to NULL (0).

Input Mask and Pattern are bytes that set the Digital Input control signals. Each bit in Mask indicates that the following bit in Pattern is part of the signal that runs the point. If you are not using Digital Input, set Mask and Pattern to 0.

Out Mask and Pattern are the same as the input, but control how the Digital Output lines are set. Some of these lines may be reserved by the instrument for alarms, in which case the state of the alarm will control that bit.

Operation is the type of point.

- 0 = Gas dilution
- 1 = Zero point
- 2 = Source Control
- 3 = Titration
- 4 = O3 Generator
- 5 = O3 Gen/Photometer

Diluent is a gas index.

Standard is six ascii characters. The gas standard is specified by name rather than index; at the time the point is run the instrument will search for the named standard and use it if it is attached to any port.

Gas is a gas index as defined by Table 32.

Units are the units the gas target value is expressed in.

Gas Target is the target concentration of gas in ppm.

Units are the units the ozone target value is expressed in.

Ozone Target is the target concentration of ozone in the above units.

Flow is the target flow in sccm.

A.2.5.2.6 Sequence (6)

Define a sequence. A sequence must contain at least one set of State/Function/Period parameters, and may contain up to sixteen. Thus, the command can be as little as 16 bytes or as many as 76 bytes.

Table 27 - Sequence Definition

Parameter	Range	Byte
Sub-Command	6	1
Sequence	116	2

Parameter	Range	Byte
Name	Text	3-8
Input Mask	0xFF	9
Input Pattern	0xFF	10
Output Mask	0xFF	11
Output Pattern	0xFF	12
State*	03	13
Function*	132 or 116	14
Period*	065535	15-16

^{*} May be repeated up to 15 additional times.

Sequence is the index of the sequence.

Name is six ascii characters. If less than six are required, set the remaining characters to NULL (0).

Input Mask and Pattern are bytes that set the Digital Input control signals. Each bit in Mask indicates that the following bit in Pattern is part of the signal that runs the sequence. If you are not using Digital Input, set Mask and Pattern to 0.

Out Mask and Pattern are the same as the input, but control how the Digital Output lines are set. Some of these lines may be reserved by the instrument for alarms, in which case the state of the alarm will control that bit.

State is the action to be taken at that point in the sequence. Idle terminates the sequence; point and sequence run the sequence indicated in Function for the duration indicated in Period; and Repeat starts the sequence over at the first state.

0 = Idle

1 = Point

2 = Sequence

3 = Repeat

Function is a point or sequence index. Points range from 1..32 and sequences range from 1..16. If the State is IDLE or REPEAT then this field should be 0.

Period is the duration in minutes to run a point, or the number of times to repeat a sequence. If the State is IDLE or REPEAT then this field should be 0.

A.2.5.2.7 Ozone Cal (7)

Perform an ozone calibration on a Serinus 2000, 3000 or 300.

Table 28 - Ozone Calibration

Parameter	Range	Byte
Sub-Command	7	1
Calibration	05	2

Parameter	Range	Byte
Value*	IEEE	3-6

* Conditional

Calibration is one of the following operations:

Table 29 – Calibration Mode Indexes

Calibration	Value	Description
Status	0	Returns a single byte that indicates the status of the current calibration.
		0 = No calibration in progress
		110 = Current step of Automatic calibration
		11 = Manual calibration is waiting to start
		12 = In a manual calibration
Last	1	Returns a single byte that indicates success (1) or failure (0) of the last calibration.
Stop	2	Stop any ozone calibration currently in progress.
Automatic	3	Begin an automatic calibration (3000 only).
Manual	4	Begin a manual calibration (2000 or 3000). The remote must follow with 5 more Ozone_Cal Value commands, supplying the ozone concentrations at each point.
Value	5	Supplies the value measured at the current step of the manual calibration. For this command the next 4 bytes must be an IEEE float

Value is the ozone concentration (in ppm) measured by an external instrument.

A.2.5.2.8 Manual Flow (8)

This command allows the MFCs to be directly controlled. Typically, an external program controls the MFCs, measures the flows, calculates the MFC coefficients, and then writes those results using SetIEEEValue. All of the MFCs can be controlled separately, thus allowing several MFCs to be calibrated at once.

The Manual Flow command supports four different operations: Mode, Port, Flow, and Gas.

Table 30 - Mode Selection

Parameter	Range	Byte
Sub-Command	8	1
Operation	0	2
Value	01	3

Mode enters or exits manual mode. While in manual flow mode all points and sequences are interrupted. While not in manual mode, all other manual flow commands are ignored.

Value is one of the following:

0 = Exit manual mode.

1 = Enter manual mode.

Table 31 - Diluent Port Selection

Parameter	Range	Byte
Sub-Command	8	1
Operation	1	2
Index	Port Index (03)	3

Port opens or closes a port.

Index is a port index value (see the Port Index table). Only one diluent port can be opened at a time. Setting the diluent ports to zero disables the respective MFCs. On instruments without the optional second diluent port, selecting it has no effect.

Table 32 - Source Port Selection

Parameter	Range	Byte
Sub-Command	8	1
Operation	2	2
Index	Port Index (0, 310)	3

Port opens or closes a port.

Index is a port index value (see the Port Index). Only one source port can be opened at a time. Setting the source ports to zero closes all ports and disables the respective MFCs.

Table 33 - Flow

Parameter	Range	Byte
Sub-Command Sub-Command	8	1
Operation	3	2
MFC	14	3
Value	IEEE	4-7

Flow sets a flow for a given MFC.

NOTE: This command does not set any valves! Thus, to run flow through the optional Source MFC, you must bypass the optional source select valve (V5) with plumbing.

MFC indicates which mass flow controller is to be set.

1 = Diluent

2 = Optional diluent

3 = Source

4 = Optional source

Value is the flow in sccm. A value of 0.0 will shut off the MFC.

Table 34 – Gas Selection

Parameter	Range	Byte
Sub-Command Sub-Command	8	1
Operation	4	2
Value	Gas Index	3

Gas indicates the gas being supplied for the calibration. This is only used to scale the flow values displayed on the Manual Flow Menu, so for remote calibrations it is not necessary.

Value is a Gas Index, normally AIR.

A.2.5.2.9 Gas (9)

Define a custom gas.

Table 35 - Custom Gas Definition Sub Command

Parameter	Value	Byte
Sub-Command	9	1
Index	110	2
Name	Text	3-8
Structure	14	9
Temperature	FLOAT	10-13
Density	FLOAT	14-17
Pure MFC	FLOAT	18-21

Index is the index of the custom gas. Up to 10 can be defined.

Name is six ascii characters. If less than six are required, set the remaining characters to NULL (0).

Structure is number indicating the size of the molecule.

Table 36 - Molecular Structure Index

Structure	Value
Monoatomic	1
Diatomic	2
Triatomic	3
Polyatomic	4

Temperature is the temperature constant.

Density is the density constant.

Pure MFC is the MFC fact for the gas if the bottle contained nothing but that gas.

A.3 List of Parameters

Note: Parameters in this list are for Serinus Cal series instruments and may not be applicable to other models.

All of these parameters may be logged to the USB Flash drive or requested via the GetIEEEValue command or set via the SetIEEEValue command.

Table 37 – Advanced Protocol Parameter List

#	Description	Notes
1	Cal/Zero Valve	0 = Zero, 1 = Cal
2	Internal Span Valve	0 = Off, 1 = On
3	+Analog Supply	Positive analog supply voltage
4	Gas 5 Avg.	Average of the readings (for Gas5) of the last n minutes where n is the averaging period E.g. Nx
5	Pregain	S30H linearization coefficient gain
6	Sample/Cal Valve	0 = Sample, 1 = Cal/Zero
7	NOx Measure Valve	0 = NO, 1 = NOx
8	NOx Bypass Valve	0 = NO, 1 = NOx
9	NOx Backgnd Valve	0 = Off, 1 = On
10	Valve Sequencing	0 = Off, 1 = On
11	LCD Contrast Pot	0 = Lightest, 255 = Darkest
12	SO2 Ref Zero Pot	S50 Reference zero pot
13	CO Input Pot	S30 Input pot
14	CO Reference Test Pot	Not Used
15	CO Measure Pot	Not Used
16	High Volt Adjust Pot	PMT High Voltage Adjust Pot for S50 & S40
17	SO2 Lamp Adjust Pot	S50 Lamp adjustment Pot
18	O3 Lamp Adjust Pot	S10 Lamp adjustment Pot
19	O3 Meas. Zero Pot (C)	S10 Signal zero measure (coarse)
20	O3 Meas. Zero Pot (F)	S10 Signal zero measure (fine)
21	PMT Fan Pot	Optical Bench fan speed control pot
22	Rear Fan Pot	Chassis Fan speed control pot
23	Pump Fine Pot	Internal Pump speed fine pot
24	Pump Coarse Pot	Internal Pump speed coarse pot
25	Analog input 0	SO2 Reference signal
26	Analog input 1	CO Reference signal

27	Analog input 2	O3 Reference signal		
28	Analog input 3	SO2 & O3 Lamp current		
29	Analog input 4	Flow block pressure		
30	Analog input 5	Cell pressure		
31	Analog input 6	Ambient pressure		
32	Analog input 7	Raw ADC calibration input		
33	Analog input 8	Reserved		
34	Analog input 9	Concentration data		
35	Analog input 10	Reserved		
36	Analog input 11	Reserved		
37	Analog input 12	Raw analog to digital count for external analog input 0. 0-5V= 0-32766 A/D counts		
38	Analog input 13	Raw analog to digital count for external analog input 1. 0-5V= 0-32766 A/D counts		
39	Analog input 14	Raw analog to digital count for external analog input 2. 0-5V= 0-32766 A/D counts		
40	Analog input 15	Reserved		
41	CO Meas. Zero Pot (coarse)	S30 Measure ZERO coarse adjustment Pot		
42	CO Meas. Zero Pot (fine)	S30 Measure ZERO fine adjustment Pot		
43	SO2 Input Pot	SO2 Measure Signal Gain Pot		
44	SO2 Ref. Gain Pot	SO2 Reference Signal Gain Pot		
45	SO2 Meas. Zero Pot	SO2 Measure zero pot		
46	O3 Input Pot	O3 Input signal gain pot		
47	Diagnostic Test Pot	The Diagnostic mode adjustment pot for all the analysers except for S30		
48	NOx Input Pot	PMT signal input gain control FOR NOx		
49	PGA Gain	1, 2, 4, 8, 16, 32, 64, 128		
50	Gas 1 Inst.	Primary gas concentration currently displayed on the front screen E.g. NO		
51	Gas 2 Inst.	Secondary gas concentration currently displayed on front screen E.g. NOx		
52	Gas 3 Inst.	Calculated gas concentration currently displayed on front screen E.g. NO2		
53	Gas 1 Avg.	Average of the readings (for Gas1) of the last n minutes where n is the averaging period		
54	Gas 2 Avg.	Average of the readings (for Gas2) of the last n minutes where n is the averaging period		
55	Gas 3 Avg.	Average of the readings (for Gas3) of the last n minutes where n is the averaging period		
56	Instrument Gain	Current calibration value (default is 1.0)		

57	Serial ID	Multidrop or Bayern-Hessen gas id		
58	Bayern-Hessen ID	For multigas instruments only		
59	Decimal Places	2-5		
60	Noise	Instrument noise		
61	Gas 1 Offset	An offset applied to Gas 1		
62	Gas 3 Offset	An offset applied to Gas 3		
63	Flow Temperature	Temperature of the flow block		
64	Lamp Current	Lamp current in mA E.g. 35 mA		
65	+5V Supply	Digital Supply voltage (should always read close to 5 volts)		
66	Conc. Voltage	Concentration Voltage		
67	High Voltage	High Voltage reading for PMT		
68	Ozonator	0 = Off, 1 = On		
69	Control Loop	0 = Off, 1 = On (default is On)		
70	Diagnostic Mode	0 = Operate 1 = Preamp 2 = Electrical 3 = Optical (default is Operate)		
71	Gas Flow	Units in slpm		
72	Gas Pressure	Units in torr		
73	Ambient Pressure	Units in torr		
74	+12V Supply	The 12 volt Power supply voltage		
75	Cell Temperature	Cell Temperature		
76	Conv. Temperature	Converter Temperature		
77	Chassis Temperature	Chassis Temperature		
78	Manifold Temp.	Temperature of the mixing manifold (all models except 1000)		
79	Cooler Temperature	Cooler Temperature		
80	Mirror Temperature	Mirror Temperature		
81	Lamp Temperature	Lamp Temperature		
82	IZS Lamp Temperature	O3 Lamp Temperature		

83	Instrument Status	Each bit in this 4-byte word represents a different condition (not all conditions apply to every instrument model):			
		BIT	Condition if set		
		0	Currently in warmup process		
		1	Volumetric units (otherwise gravimetric units)		
		2	Performing a background		
		3	Currently in Span mode		
		4	Currently in Zero mode		
		5	Instrument Out of Service (or in Diagnostic mode, PTF compensation or control loop disabled, or Comms debugging enabled)		
		6	High Voltage failure		
		7	System power failure (not actually possible to report)		
		8	Reference voltage failure		
		9	Cell temperature failure		
		10	Cooler failure		
		11	Converter failure		
		12	Correlation wheel	failure	
		13	Lamp source failu	re	
		14	Flow fault		
		15	Any system error panel light is on)	(the red instrument	
84	Reference Voltage	Units i	Jnits in Volts		
85	Calibration State	This va	This variable has two different sets of values:		
			Set Calibration State Get IEEE Value		
			EASURE	0 = MEASURE	
		1 = CY 2 = ZE		1 = ZERO 2 = SPAN	
			3 = SPAN		
86	Primary Raw Conc.	(For S40, before NOx background and gain)			
87	Secondary Raw Conc.	Only for multigas instruments (For S40, before NOx background and gain)			
88	S40 Backgnd Conc.	NOx Background Concentration			
		(For S40, before gain)			
89	Cal. Pressure	Calibration Pressure			
90	Conv. Efficiency	Converter Efficiency			

91	Multidrop Baud Rate Analog Range AO 1	0 = 1200 bps 1 = 2400 bps 2 = 4800 bps 3 = 9600 bps 4 = 14400 bps 5 = 19200 bps 6 = 38400 bps Maximum range value for analog output
93	Analog Range AO 2	
94	Analog Range AO 3	
95	Output Type AO 1	Output Type
96	Output Type AO 2	1 = Voltage
97	Output Type AO 3	0 = Current
98	Anlg Ofst/Rng AO1	Voltage Offset /Current Range
99	Anlg Ofst/Rng AO2	0 = 0% or 0-20mA
100	Anlg Ofst/Rng AO3	1 = 5% or 2-20mA 2 = 10% or 4-20mA
101	F/Scale Volt AO 1	5.0 Volt Calibration value
102	F/Scale Volt AO 2	
103	F/Scale Volt AO 3	
104	Z Adj Volt AO 1	0.5 Volt Calibration value
105	Z Adj Volt AO 2	
106	Z Adj Volt AO 3	
107	-Analog Supply	Negative analog supply
108	Digital Outputs	A single byte expressing the most recent state of the digital outputs
109	Digital Inputs	A single byte expressing the most recent state of the digital inputs

110 Instrument State 0 = SAMPLE FILL 1 = SAMPLE MEASURE 2 = SAMPLE FILL AUX 3 = SAMPLE MEASURE AUX	
2 = SAMPLE FILL AUX	
3 = SAMPLE MEASURE AUX	
4 = SAMPLE FILL AUX2	
5 = SAMPLE MEASURE AUX2	
6 = BACKGROUND FILL	
7 = BACKGROUND MEASURE	
8 = BACKGROUND PURGE	
9 = BACKGROUND FILL AUX	
10 = BACKGROUND MEASURE AUX	
11 = ZERO FILL	
12 = ZERO MEASURE	
13 = ZERO FILL AUX	
14 = ZERO MEASURE AUX	
15 = ZERO FILL AUX2	
16 = MEASURE AUX2	
17 = BACKGROUND FILL ZERO	
18 = BACKGROUND MEASURE ZERO	
19 = SPAN FILL	
20 = SPAN MEASURE	
21 = SPAN FILL AUX	
22 = SPAN MEASURE AUX	
23 = SPAN FILL AUX2	
24 = SPAN MEASURE AUX2	
25 = BACKGROUND FILL SPAN	
26 = BACKGROUND MEASURE SPAN	
27 = BACKGROUND PURGE SPAN	
28 = ELECTRONIC ZERO ADJUST	
29 = INSTRUMENT WARM UP	
30 = BACKGROUND ADJUST FILL	
31 = BACKGROUND ADJUST MEASURE	
CO Lin. Factor A CO Linearisation Factor A	
CO Lin. Factor B CO Linearisation Factor B	
CO Lin. Factor C CO Linearisation Factor C	
CO Linearisation Factor D	
CO Linearisation Factor E CO Linearisation Factor E	
116 Instrument Units 0 = ppm	
1 = ppb	
2 = ppt	
3 = mg/m³	
4 = μg/m³	
5 = ng/m ³	
6 = %	

117	Backgnd Meas. Time	In seconds.
118	Sample Fill Time	These parameters can be changed, but only
119	Sample Measure Time	temporarily; restarting the instrument will restore them to their default values.
120	Aux Measure Time	
121	Aux Smpl. Fill Time	
122	Backgnd Fill Time	
123	Zero Fill Time	
124	Zero Measure Time	
125	Span Fill Time	
126	Span Measure Time	
127	O3 Gen Coeff D	O3 Generator Coefficient D
128	Backgnd Pause Time	In seconds
129	Bkgnd Intrleav Fact	
130	Cal. Pressure 2	Calibration Pressure for 2 nd gas
131	2nd Instrument Gain	Unused (always reports 1.0)
132	Background voltage	Units in Volts
133	MFC 1 Coeff A0	Serial MFC coefficients
134	MFC 2 Coeff A0	MFC 1 = Diluent
135	MFC 3 Coeff A0	MFC 2 = Optional Diluent MFC 3 = Source
136	MFC 4 Coeff A0	MFC 4 = Optional Source
137	MFC 1 Coeff A1	·
138	MFC 2 Coeff A1	
139	MFC 3 Coeff A1	
140	MFC 4 Coeff A1	
141	MFC 1 Coeff A2	
142	MFC 2 Coeff A2	
143	MFC 3 Coeff A2	
144	MFC 4 Coeff A2	
145	Cycle Time	In minutes
146	CO Cooler Pot	CO Cooler voltage adjustment POT
147	CO Source Pot	CO Source voltage adjustment POT
148	CO Test Meas. Pot	Diagnostics use only
149	CO Test Ref. Pot	Diagnostics use only
150	O3 Ref Average	S10 Background Average
151	PTF Correction (gas 1)	Pressure Temperature Flow Compensation Factor for first gas
152	PTF Correction (gas 2)	Pressure Temperature Flow Compensation Factor for second gas in dual gas analysers.

153	Inst. Cell Pressure	Instantaneous cell pressure	
154	Manifold Pressure	Manifold Pressure in S40 instruments	
155	Cell Press. (gas1)	Cell Pressure for Gas 1	
156	Cell Press. (gas2)	Cell Pressure for Gas 2	
157	Cell Press. (Bgnd)	Cell Pressure when in Background	
158	Background	0 = the instrument is measuring a gas sample	
		1 = the instrument is measuring background air	
159	Gas To Measure	S51 only; see Measurement Settings Menu	
		0 = Measure both gasses	
		1 = Measure SO2 only	
		2 = Measure H2S only	
160	Valve States	Diagnostic use only	
161	Temperature Units	0 = "°C"	
		1 = "°F"	
		2 = "K"	
162	Pressure Units	0 = "torr"	
		1 = "psi"	
		2 = "mbar"	
		3 = "atm"	
		4 = "kPa"	
163	Averaging Period	0 = "1 Min"	
		1 = "3 Mins"	
		2 = "5 Mins"	
		3 = "10 Mins"	
		4 = "15 Mins"	
		5 = "30 Mins"	
		6 = "1 Hr"	
		7 = "4 Hrs"	
		8 = "8 Hrs"	
		9 = "12 Hrs"	
		10 = "24 Hrs"	
164	Filter Type	0 = NO FILTER	
		1 = KALMAN FILTER	
		2 = 10 SEC FILTER	
		3 = 30 SEC FILTER	
		4 = 60 SEC FILTER	
		5 = 90 SEC FILTER	
		6 = 300 SEC FILTER	
		7 = ADPTIVE FILTER	
165	NO2 Filter enabled	0 = Disabled, 1 = Enabled	

166	Background Interval	0 = 24 Hrs	
		1 = 12 Hrs	
		2 = 8 Hrs	
		3 = 6 Hrs	
		4 = 4 Hrs 5 = 2 Hrs	
		6 = Disable	
167	Comittee (COMA) Devel		
167	Service (COM1) Baud	Serial baud rate	
168	Multidrop (COM2) Baud	0 = 1200 bps 1 = 2400 bps	
		2 = 4800 bps	
		3 = 9600 bps	
		4 = 14400 bps	
		5 = 19200 bps	
		6 = 38400 bps	
169	Service Protocol	0 = EC9800	
170	Multidrop Protocol	1 = Bayern-Hessen	
		2 = Advanced	
		3 = Modbus	
171	AO1 Over Range	The Upper Concentration Range when Over-	
172	AO2 Over Range	Ranging is enabled	
173	AO3 Over Range		
174	AO1 Over-Ranging	0 = Over Ranging Disabled	
175	AO2 Over-Ranging	1 = Over Ranging Enabled	
176	AO3 Over-Ranging	2 = Over Ranging enabled and currently active	
177	Heater Set Point	Cell Heater Set Point units in °C	
178	PMT High Volt. Pot	High voltage pot setting	
179	PMT Test LED Pot	PMT Test LED intensity controller POT	
180	Last Power Failure	Time Stamp of the Last power fail (4 byte time stamp)	
		Bit 31:26 Year (0 – 99)	
		Bit 25:22 Month (1 – 12)	
		Bit 21:17 Date (1 – 31)	
		Bit 16:12 Hour (00 – 23)	
		Bit 11:06 Min (00 – 59)	
		Bit 05:00 Sec (00 – 59)	
181	Inst Manifold Pres.	Manifold Pressure in S40 instruments (instantaneous)	
182	Cell Press. (gas5)	Cell Pressure for Gas 5 (Nx)	
183	Gas 4 Inst.	Calculated gas concentration currently displayed on front screen E.g. NH3	
184	Gas 4 Avg.	Average of the readings (for Gas 4) of the last n minutes where n is the averaging period E.g. NH3	

185	Gas 5 Inst.	Calculated gas concentration currently displayed on front screen E.g. Nx
186	NH3 Conv. Efficiency	
187	Cell/Lamp Duty Cycle	
188	Mirror T. Duty Cycle	
189	Flow Temp Duty Cycle	
190	Cooler T. Duty Cycle	
191	Conv Temp Duty Cycle	
192	CO Conv T Duty Cycle	
193	F/Scale Curr AO 1	20 mA Calibration value
194	F/Scale Curr AO 2	
195	F/Scale Curr AO 3	
196	Z Adj Curr AO 1	4 mA Calibration value
197	Z Adj Curr AO 2	
198	Z Adj Curr AO 3	
199	Ext Analog Input 1	The value of the external analog input after the
200	Ext Analog Input 2	multiplier and offset have been applied
201	Ext Analog Input 3	
202	Conv Set Point	Converter Set Point
203	Cal. Pressure 3	Calibration Pressure 3
204	PTF Correction (gas 3)	Pressure Temperature Flow Compensation Factor for third gas in multi-gas instruments.
205	Dilution Ratio	The current dilution ratio (default is 1.0)
206	Traffic Light	State of the status light: 0 = Green 1 = Amber 2 = Off (normally impossible) 3 = Red
207	Network Protocol	0 = EC9800 1 = Bayern-Hessen 2 = Advanced 3 = Modbus
208	Gas 4 Offset	An offset applied to Gas 4
209	O3 GEN Fine Pot	Ozone generator control, DAC controlled. DAC: 064535
210	O3 Gen Lamp Current	Units in mA
211	O3 GEN Coarse Pot	Repeat of parameter 209
212	Logging Period	The data logging period, in seconds (1 86400)
213	O3 Gen Coeff A	Ozone generator coefficients

214	O3 Gen Coeff B	Note that Coeff D is parameter 127
		,
215	O3 Gen Coeff C	
216	MFC 1 Voltage	Flow voltages
217	MFC 2 Voltage	Uses the same mapping as the MFC coefficients
218	MFC 3 Voltage	
219	MFC 4 Voltage	
220	Diluent Flow	SCCM
221	Source Flow	SCCM
222	Ozone Flow	SCCM
223	Output Flow	SCCM
224	Gas 1 Conc.	Delivered gas concentrations
225	Gas 2 Conc.	
226	Gas 3 Conc.	
227	Gas 4 Conc.	
228	Gas 5 Conc.	
229	Gas 6 Conc.	
230	Ozone Conc.	
231	Gas 1 ld	Gas ID number
232	Gas 2 Id	0 = AIR
233	Gas 3 Id	1 = NH3
234	Gas 4 Id	2 = C4H10
235	Gas 5 Id	3 = CO2 4 = CO
236	Gas 6 Id	5 = C2H6
		6 = HE
237	Diluent Id	7 = H2S
		8 = CH4
		9 = NO
		10 = N2
		11 = NO2
		12 = O2
		13 = 03
		14 = C3H8
		15 = SO2
238	Diluent Port	01
239	Source Port	08
240	Mode	0 = Idle
		1 = Manual
		2 = Point
		3 = Sequence

241	Point	Current or last point (032), where 0 is the manual point
242	Sequence	Current or last sequence (116)
243	Operation	0 = Gas Dilution 1 = Zero Point 2 = Source Control 3 = Titration 4 = O3 Generator 5 = O3 Gen/Photometer
244	Time Remaining	Current point time remaining in minutes
245	MFC Factor Diluent	MFC factor for current diluent
246	MFC Factor Source	MFC factor for current gas standard
247	MFC 1 Size	MFC capacity in SCCM
248	MFC 2 Size	Uses the same mapping as the MFC coefficients
249	MFC 3 Size	0 means the MFC is not installed
250	MFC 4 Size	
251	Manual Timeout	Sets the manual timeout for points and flows not controlled by a sequence (024 hours)
252	Ozone Adjusted	Ozone value before filtering (same as 138 on a Serinus)
253	PCT Active	True if the Photometer Correction Titration is enabled. This occurs after a photometer ozone point has been running long enough to reach stability, and expires five minutes after the point stops running, Writing a 1 to this value will enable the PCT, so that if a titration point is launched within five minutes it will use the PCT value for the ozone generator. To force a PCT this value must be written within five minutes before the point is started.
254	PCT Value	The DAC value for the current or last photometer corrected titration point. To use this value in a titration it must be written before the point is started.

Appendix B. EC9800 Protocol

The Serinus implements a subset of the 9800 instrument protocol. Only the basic commands of reading the concentration value and setting the instrument calibration state (measure, span or zero) are supported.

B.1 Command Format

All commands are sent as ASCII strings. Fields are delimited by commas and the command ends with the normal return key (i.e. the TERMINATOR is either a <CR> or a <LF>). The DEVICE I.D. is the Serial ID assigned in the **Main Menu > Communications Menu > Serial Communication Menu**. If the instrument is not being used in a multi-drop connection, the DEVICE I.D> can be replaced with the string "???".

B.2 Commands

B.2.1 DCONC

Function: Sends the current instantaneous concentration data to the serial port.

Format: DCONC, {<DEVICE I.D.>} {TERMINATOR}

Device response: {GAS} <SPACE> {STATUS WORD} <CR><LF>

The GAS value is the concentration value in the current instrument units, expressed as a floating point number (i.e. 12.345). The STATUS WORD indicates the instrument status in hex (i.e. A01F) using the following format:

Bit 15 = SYSFAIL (MSB)

Bit 14 = FLOWFAIL

Bit 13 = LAMPFAIL

Bit 12 = CHOPFAIL

Bit 11 = CVFAIL

Bit 10 = COOLERFAIL

Bit 9 = HEATERFAIL

Bit 8 = REFFAIL

Bit 7 = PS-FAIL

Bit 6 = HV-FAIL

Bit 5 = OUT OF SERVICE

Bit 4 = Instrument is in zero mode

Bit 3 = Instrument is in span mode

Bit 2 = Unused

Bit 1 = SET \rightarrow PPM selected, CLEAR \rightarrow MG/M3

Bit 0 = reserved (LSB)

B.2.2 DSPAN

Function: Commands the instrument to enter span mode.

Format: DSPAN, {<DEVICE I.D.>} {TERMINATOR}

Device response: <ACK> if the instrument is able to perform the command, <NAK> if not.

B.2.3 DZERO

Function: Commands the instrument to enter the zero mode.

Format: DZERO, {<DEVICE I.D.>} {TERMINATOR}

Device response: <ACK> if the instrument is able to perform the command, <NAK> if not.

B.2.4 ABORT

Function: Commands the instrument to abort the current span/zero mode and

return to measure mode.

Format: ABORT, {<DEVICE I.D.>} {TERMINATOR}

Device response: <ACK> if the instrument is able to perform the command, <NAK> if not.

B.2.5 RESET

Function: Reboots the instrument (software reset).

Format: RESET, {<DEVICE I.D.>} {TERMINATOR}

Device response: <ACK>.

Appendix C. Bayern-Hessen Protocol

The Serinus implements a limited subset of the Bayern-Hessen Network protocol. Only the ability to set the instrument calibration state (measure, span or zero) and read the gas concentrations are supported.

C.1 Command Format

<STX><text><ETX>< bcc1><bcc2>

Where:

<STX> ASCII Start of Text = 0x02 hex.

<Text> ASCII text maximum length of 160 characters.

<ETX> ASCII End of Text = 0x03 hex.

<bcc1> ASCII representation of block check value MSB. (That is, the character

"3" for 3, the character "F" for 15, etc.)

<bcc>> ASCII representation of block check value LSB.

The block check algorithm begins with 0 and exclusive-OR's each ASCII character from <STX> to <ETX> inclusive. This block check value is converted to ASCII format and sent after the <ETX> character.

Examples

This is an example of a valid Bayern-Hessen data request for an instrument that has a Serial ID of 97 (Serial ID assigned in the Main Menu \rightarrow Communications Menu \rightarrow Serial Communication Menu):

<STX>DA097<EXT>3A

The block check calculation is best shown by the following example:

Table 38 - Bayern-Hessen Data

Character	Hex Value	Binary	Block Check
<stx></stx>	02	0000 0010	0000 0010
D	44	0100 0100	0100 0110
A	41	0100 0001	0000 0111
0	30	0011 0000	0011 0111
9	39	0011 1001	0000 1110
7	37	0011 0111	0011 1001
<etx></etx>	03	0000 0011	0011 1010

The binary value 0011 1010 corresponds to the hex value 3A. This value in ASCII forms the last two characters of the data request message.

Note: The I.D. of 97 is sent as the sequence 097. All I.D. strings must have three digits and must always be padded with ASCII zero characters.

This is an example of a valid command to put the unit in the manual span mode if the instrument has an ID of 843:

<STX>ST843 K<ETX>52

The block check operation is best shown with the following table:

Table 39 – Block Check Operation

Character	Hex Value	Binary	Block Check
<stx></stx>	02	0000 0010	0000 0010
S	53	0101 0011	0101 0001
Т	54	0101 0100	0000 0101
8	38	0011 1000	0011 1101
4	34	0011 0100	0000 1001
3	33	0011 0011	0011 1010
<space></space>	20	0010 0000	0001 1010
K	4B	0100 1011	0101 0001
<etx></etx>	03	0000 0011	0101 0010

The binary block check value is 0101 0010 which is the hex value 52 as shown at the end of the command string.

C.2 Commands

C.2.1 DA

Return the current instantaneous concentration.

Command Format

<STX>{DA}{<kkk>}<ETX>< bcc1><bcc2>

Where:

kkk Device's ID. This field is optional, but if provided it must be padded with zeros to be 3 characters long. The value must match one of the following: the instrument's Bayern-Hessen ID, 000, or ??? (three question marks).

bcc1 First byte of the block check calculation.

bcc2 Second byte of the block check calculation.

Device response

The instrument responds with a variable length string, depending on how many measured gasses have been assigned an ID above 0. The text between the [] will be repeated once for each reported gas.

<STX>{MD}{cc}[<SP><kkk><SP><+nnnn+ee><SP><ss><SP><ff><SP><mmm><SP>eeeeee<SP>]<ETC><bcc1><bcc2>

Where:

<SP> Space (0x20 hex).

cc The number of gasses reported (0..5). The text in between the [] will

be repeated once for each gas reported.

kkk The Bayern-Hessen instrument ID.

+nnnn+ee Gas concentration.

ss Status byte (see table below for individual bits).

ff Failure byte (see table below for individual bits).

mmm Gas ID.

eeeeee Ecotech instrument ID.

bcc1 First byte of the block check calculation.

bcc2 Second byte of the block check calculation.

Table 40 - Status Bit Map

Status Bit	Meaning if set to 1
0	Instrument off (this value is always set to 0).
1	Out of service.
2	Zero mode.
3	Span mode.
4	-
5	-
6	Units: 1 = Volumetric, 0 = Gravimetric.
7	Background mode (S30 and S50 family only).

Table 41 – Failure Bit Map (Positive Logic)

Failure Bit	Meaning if set to 1
0	Flow sensor failure.

Failure Bit	Meaning if set to 1
1	Instrument failure. Note that while the In Maintenance mode reports as an instrument failure with a red light on the front panel, for Bayern-Hessen this particular error is merely a status instead of a failure.
2	-
3	Lamp failure (S40 family only).
4	-
5	Cell heater failure (S30, S40 and S50 family only).
6	-
7	-

C.2.2 ST

Set the instrument mode.

Command Format

<STX>{ST}{< kkk>}<SP>{command}<ETC><bcc1><bcc2>

Where:

kkk Device's Serial ID. This field is optional, but if provided it must be padded with zeros to be 3 characters long. The value must match one of the following: the instrument's Bayern-Hessen ID, 000, or ??? (three question marks).

Command M, N or K for Measure, Zero or Span mode.

bcc1 First byte of the block check calculation.

bcc2 Second byte of the block check calculation.

Device response

The device does not issue a response to this command.

Appendix D. ModBus Protocol

The Serinus supports a limited Modbus implementation. The only function codes supported are 3 (read holding register) and 16 (write multiple registers). The Serial ID is assigned in the **Main Menu**Communications Menu
Serial Communication Menu.

D.1 Command Format

<Slave address><Function code><Start register (MSB)><Start register <LSB><Register count (MSB)><Register count (LSB)><Write byte count><Write data><CRC (MSB)><CRC (LSB)>

Where:

Slave address The instrument Serial ID. If the request is being made via TCP, this field

is omitted.

Function code 3 (read) or 16 (write).

Start register Specifies an Advanced Protocol IEEE index (refer to Table 37 to see

what values are available and what index to specify for them). The ModBus index is calculated from the Advanced Protocol index via the

following formula:

ModBus Index = Advanced Protocol Parameter List number x 2 + 256

Register count A single read command may request from 2 to 124 registers, which is

to say from 1 to 62 values. The first index is specified by Start register; all following indexes are in sequential order. To read values that are not sequential requires using another read command. Note that the number of registers must be even, as each value is returned as a floating point value (4 bytes) and each register is a word (2 bytes).

A write command can only write a single IEEE value at a time. Thus, for

write commands this value must be 2.

Write byte count This field is only supplied for a write request; it indicates the amount of

bytes of data that will follow, and must be set to 4 (since only one

value can be written at a time).

Write data This field is only supplied for a write request. It is the value to be

written, expressed in IEEE format. The "Endian" structure can be selected on the Modbus Serial Communications menu. Big Endian means that the MSB byte of the IEEE value is at the right end of the

four bytes; Little Endian means it is at the left.

CRC Calculated by the standard Modbus CRC method. If the request is

being made via TCP, this field is omitted.

D.2 Commands

D.2.1 Read Holding Registers

The response to a read request is in the following format:

<Slave address>3<Register count (MSB)><Register count (LSB)><Data><CRC (MSB)><CRC (LSB)>

Where:

Slave address As general command format.

Register count As general command format.

Data 4 to 248 bytes of data, representing 1 to 62 floating point numbers in

IEEE format. The "Endian" structure can be selected on the Modbus Serial Communications menu. Big Endian means that the MSB byte of the IEEE value is at the right end of the four bytes; Little Endian means

it is at the left.

CRC As general command format.

D.2.2 Write Holding Register

The only supported use for this command is to set the instrument into a calibration state.

Where:

Start register MSB 1

Start register LSB 170

Register count 2

Write Data bytes The IEEE representation of 0, 1, 2, or 3

0 puts the instrument into Measure mode (0,0,0,0)

1 puts the instrument into Cycle mode (63,128,0,0)

2 puts the instrument into Zero mode (64,0,0,0)

3 puts the instrument into Span mode (64,64,0,0)

The response to a write request is to return the first six bytes of the initiating write request.

D.2.3 Error

An error will be returned in the following format:

<Slave address><Function code><Exception code><CRC (MSB)><CRC (LSB)>

Slave address As general command format.

Function code The initiating command's function code + 128; so either 131 (read) or

144 (write).

Exception code The error code (see table below).

CRC As general command format.

Table 42 – Modbus Error Codes

Value	Error
1	Illegal Function
2	Illegal Data Address
3	Illegal Data Value
4	Slave Device Failure

This page is intentionally blank

Appendix E. Gascal Protocol

The Serinus Cal has a number of in built serial functions that will respond when interrogated. All commands are prefixed by a digit 0...7 corresponding to the Serial ID (see **Serial Communications Menu**, Section 3.5.36). This system allows multiple Serinus Cals to be connected to and controlled by the same DTE controller.

Note: All commands are in upper case. In this list, lower-case letters are placeholders, e.g., "n" refers to a single digit number, "nn" refers to a two-digit number (preceded by 0 if necessary), "nnn" refers to an integer of any length, and "n.n" and "c0,c1,c2" refer to floating point numbers of any length.

All commands sent to the Serinus Cal must terminate with a carriage return (CR). Unless otherwise stated, all responses sent from the Serinus Cal conclude with a carriage return and line feed (CR LF).

Table 43 – Native Serial Commands

Command	Description	Response
iMFCn?	Outputs polynomial coefficients for MFC n=14, where result = c2*v^2 + c1*v + c0 1 = Diluent 2 = Optional Diluent 3 = Source 4 = Optional Source	c0,c1,c2
iMFCn=c0,c1,c2	Inputs polynomial coefficients for MFC n=14 1 = Diluent 2 = Optional Diluent 3 = Source 4 = Optional Source	ОК
iSETFLOWn=	Sets flow for MFC n=14 1 = Diluent 2 = Optional Diluent (Note: on the Gas Cal this set the flow for ozone production; on the Serinus Cal that is the same as setting the Diluent) 3 = Source 4 = Optional Source	ОК
PURGE TIME?	Returns purge time in seconds	nnn
PURGE TIME=time	Sets purge time in seconds	ОК
iMANUAL=ON	Turns on Manual mode. This will begin running the last point loaded with iSETPOINT.	ОК
iMANUAL=OFF	Turns off Manual mode (selects Idle mode)	ОК
iT?	Outputs manual timeout (minutes)	nnn
iT=nnn	Inputs manual timeout (minutes)	ОК
iSETPOINTnn	Makes point nn the current point (i.e., loads its parameters into the Manual operation screen).	ОК

Command	Description	Response
iOZONE=c0,c1,c2	Sets ozone generator coefficients	ОК
iOZONE?	Returns ozone generator coefficients	c0,c1,c2
iOZONES=n.n	Sets the current manual point's ozone target (in ppm). For this to have any effect, iSETPOINT must have previously loaded an ozone point.	ОК
iVInn?	Outputs a/d voltage for a specific source. 0 = source MFC 1 = optional source MFC 2 = diluent MFC 3 = optional diluent MFC 4 = ozone lamp current 5 = ozone lamp temperature 7 = positive 12V supply 8 = positive 5V supply 10 = positive analog supply 11 = negative analog supply 13 = chassis temperature	n.n
iSTATUS?	Outputs status and any alarms	IDLE or POINTnn n, where nn is the current point and n is a bit field with the following meanings: Bit 3 = ozone temp fail Bit 6 = source or diluent flow fail Bit 7 = bit 3 or bit 6
iVER?	Outputs software version	n.nn.nnnn
iREADn	Outputs a value based on n 0 = gas concentration of first gas in the gas standard for the current point (ppm) 1 = ozone concentration (ppm) 2 = diluent flow (sccm) 3 = source flow (sccm)	n.n
iC?	Reports primary gas concentration (the same as iREADO)	n.n

Appendix F. Beer-Lambert Law

The Beer-Lambert equation, shown below, is used to calculate the concentration of ozone from the ratio of the two light intensities measured:

$$\frac{I}{I_0} = e^{-acd}$$

Equation 1 – Beer-Lambert Law

Where:

- ullet is the light intensity measured with ozone in the gas sample
- ullet I_0 is the light intensity measured with no ozone in the gas sample
- a is the ozone absorption coefficient at 253.7 nm (1.44 x 10-5 m2/mg)
- c is the mass concentration of ozone in mg/m³
- d is the optical path length in m

1492 Ferntree Gully Road, Knoxfield VIC Australia 3180 Phone: +61 (0)3 9730 7800

Fax: +61 (0)3 9730 7899

General email: info@ecotech.com Support: support@ecotech.com

www.ecotech.com